行星齿轮箱状态监测和故障诊断概述 联系客服

发布时间 : 星期一 文章行星齿轮箱状态监测和故障诊断概述更新完毕开始阅读044ea9a45727a5e9856a6198

(3) 许多已经建立起来的行星齿轮箱的故障诊断和状态监测的方法适合于静态

工况。而且,在这些方法中,行星齿轮箱的元件如轴承、齿轮和轴是单独进行研究的。正如在参考文献[122,123]所指出的那样,由于这些研究与实际的齿轮箱磨损过程没有太多共同之处,所以,这是一种错误的研究齿轮箱磨损工程的方法。

(4) 尽管研究人员已经引进了一些行星齿轮箱故障诊断和状态监测的新方法,但

是他们中的许多方法都是从适用于固定轴的齿轮箱的方法调整后用于行星齿轮箱的。有什么基础的理论能够证明这些调整是合理的吗?如何使这些方法更好地应用于行星齿轮箱?也许,直到我们完全理解行星齿轮箱的具体行为和故障机理,我们才能回答这些问题和恰当地使用这些方法。

5 前景

针对第4章中讨论的研究问题,作者考虑在未来的行星齿轮箱的故障诊断研究中作出如下预测。

(1) 由于大多数已经建立的模型是模拟行星齿轮箱的重载工况,所以我们需要建

立更多的模型,而这些模型应当考虑不同的故障模式,不同的损伤等级,以及不同的工作情况。为了使用这些模型,研究人员需要探索模型响应和关键参数之间的关系,如系统刚度、模型参数和故障严重程度。这些因素之间的关系找到以后,将为行星齿轮箱的故障诊断和状态监测提供重要参考和所需的知识。

(2) 正如2.1节所强调的那样,在行星齿轮箱中,多个行星齿轮同时与太阳轮和

内齿圈啮合,这些行星齿轮引起相似的振动,但具有不同的相位,这些来自行星齿轮箱的振动可能彼此耦合。这种耦合可能导致故障组件的振动被中和或削弱。因此,建立解耦技术,有助于从复合模式振动信号中提取出某种故障模式的明显特征,并对其增强,这是行星齿轮箱故障诊断的最重要工作之一。

(3) 为了检测齿轮箱的故障,传感器通常用来测量振动,并固定在齿轮箱的外壳

上。由于行星齿轮绕太阳轮中心转动,所以,从齿轮啮合点到固定位置的传感器的振动传递路径是时刻变化的。因此,在振动测量过程中,除了这些故障产生的信号,一些额外的信号调制成分也会在其中混杂。如何从时变的传

(4)

(5)

(6)

(7)

递路径引起的信号中提取和分离出故障信号的调制成分是一个富有挑战性的难题。

很多研究人员使用他们自己检测行星齿轮齿轮故障的典型数据来阐述他们的方法的有效性,但是,无法保证他们的方法能够有效处理其他数据,实际上,文献中公开的行星齿轮箱的测量数据是很少的,而固定齿轮箱却有足够的公开数据,这些数据或者是来自实验室,或者是来自野外实际工况。因此,做更多的具有不同故障模式和严重程度的实验,丰富数据库和建立标杆数据对检验新诊断方法的鲁棒性非常重要。

众所周知,行星齿轮箱的故障机理和响应特性的研究是极其重要的。因此,作者建议更多地关注如下方面:行星齿轮箱动态响应和健康状况的关系,故障的发展机理,故障的敏感特性等。若能加入这些方面的研究,我们将能建立行星齿轮箱有效的监测和诊断方法。

考虑到快速变化的载荷和旋转速度对振动信号的影响,有必要建立一种能够解决动态工况下行星齿轮箱状态监测和故障诊断的难题。例如,轮式铲斗挖掘机的行星齿轮箱。而且,考虑到组件之间的相互影响,建立的方法应当把整个机器作为一个整体来考虑,而不是一个分离的系统,也不是一个具体组件或故障的分离[122,123]。

由于振动信号易于测量而且含有丰富的信息,所以在行星齿轮箱的状态监测和故障诊断中广泛使用振动信号。为了概述行星齿轮箱诊断的准确性,多维诊断技术越来越受到青睐。而多维诊断技术使用各种不同类型的数据,像油特性、磨粒、振动、声音、载荷、转速和电流等。

6 结语

这篇文章对行星齿轮箱的状态监测和故障诊断进行了综述。在这篇综述中,作者首先阐述了行星齿轮箱独有的特性和齿轮传动复杂的结构。然后,按照使用的方法,如建模、信号处理和智能诊断对已经发表的行星齿轮箱的状态监测和故障诊断方面的文章进行了调研和总结。最后,对本研究领域内目前可能存在的问题进行了概括,并讨论了未来研究的可能课题。我们认为这篇综述已经综合了行星齿轮箱故障诊断有关的孤立信息,并为对本研究领域感兴趣的读者提供一个综合参考。

7 致谢

此项研究收到了如下组织的支持:中国国家自然科学基金(51005172和51222503),新世纪优秀大学人才(NCET-11-0421),加拿大自然科学和工程研究委员会(NSERC),陕西省自然科学基金研究工程(2013JQ7011)和中央大学基础研究基金(2012jdgz01)。