线性代数第一章习题答案 联系客服

发布时间 : 星期二 文章线性代数第一章习题答案更新完毕开始阅读088fbe6eaf1ffc4ffe47acb8

习 题 1-1

1.计算下列二阶行列式: (1)

x1; (2)sin??cos?1xcos?sin?.

解 (1)

x11x??x?2?1?x?1.

(2)

sin??cos?2cos?sin??sin??(?cos2?)?1.

2.计算下列三阶行列式:

2?110a0(1)322; (2)b0c; 1?210d0111abc(3)abc; (4)aa?ba?b?c.

a2b2c2a2a?b3a?2b?c解 (1)原式?2?2?1?1?3?(?2)?(?1)?2?1?1?2?1?(?1)?3?1?2?2?(?2)?5.2)原式?0?0?0?b?d?0?a?c?0?0?0?0?a?b?0?0?c?d?0. 3)原式?bc2?ab2?a2c?a2b?ac2?b2c?(b?a)(c?a)(c?b). 4)原式?a(a?b)(3a?2b?c)?ac(2a?b)?ab(a?b?c)?ac(a?b)

?a(2a?b)(a?b?c)?ab(3a?2b?c)?a3.

3.证明下列等式: a11a12a13aa2321a22aa2223?a11?aa21a23a2212?aa2113.

a32a33a31a33a31a3231a32aa33a11a12a13证明 a21a22a23 a31a32a33?a11a22a33?a12a23a31?a13a21a32?a13a22a31?a12a21a33?a11a23a32?a11(a22a33?a23a32)?a12(a21a33?a23a31)?a13(a21a32?a22a31)

?aa22a2321a2321a2211a32a?aa1233a31a?aa1333a31a.

324.用行列式解下列方程组:

(1)x?3y?5?2x1?3x2?x3??1?4?x?4y?6 ; (2)??x1?x2?x3?6.

?3??3x1?x2?2x3??1解 (1)D?4334?7,D531?64?2,D52?436?9,

1

(((

D2D9所以 x?1D?7,y?2D?7. 2?31?1?31(2)D?111??23,D1?611??23,

31?2?11?22?112?3?1D2?161??46,D3?116??69; 3?1?231?1所以 xD11?D?1,x22?DD?2,x33?DD?3.

习 题 1-2

1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1234; (2)4132; (3)3421; (4)2413;

(5)13?(2n?1)24?(2n); (6)13?(2n?1)(2n)(2n?2)?2.解 (1)是标准排列,其逆序数为0;

(2)逆序有(4 1),(4 3),(4 2),(3 2),所以逆序数为4. (3)逆序有(3 2),(3 1),(4 2),(4 1),(2 1),所以逆序数为5. (4)逆序有(2 1),(4 1),(4 3),所以逆序数为3. (5)逆序有

(3 2) 1(5 2),(5 4) 2(7 2),(7 4),(7 6) 3???????

((2n?1) 2),((2n?1) 4),((2n?1) 6),?,((2n?1) (2n?2)) 所以逆序数为 1?2???n?n(n?1)2.

(6)逆序有

(3 2) 1(5 2),(5 4) 2???????

((2n?1) 2),((2n?1) 4),((2n?1) 6),?,((2n?1) (2n?2)) (4 2) 1(6 2),(6 4) 2???????

((2n) 2),((2n) 4),((2n) 6),?,((2n) (2n?2)) 所以逆序数为 1?2???(n?1)?(n?1)???2?1?n(n?1).

2.写出四阶行列式中含有因子a11a23的项.

2

个 个 个 (n?1)个个 个 (n?1)个个 个 (n?1)个

解 由定义知,四阶行列式的一般项为(?1)a1p1a2p2a3p3a4p4,其中?为p1p2p3p4的逆序数.由

于p1?1,p2?3已固定,p1p2p3p4只能形如13□□,即1324或1342.对应的t分别为0?0?1?0?1或0?0?0?2?2,所以?a11a23a32a44和a11a23a34a42为所求.

3.在5阶行列式D?det(aij)展开式中,下列各项应取什么符号?为什么? (1)a13a22a34a45a51; (2)a51a32a13a44a25; (3)a51a32a15a44a23; (4)a21a53a34a12a45. 解 (1)因?(32451)?5,所以前面带“-”号. (2)因?(53142)?7,所以前面带“-”号.

(3)因?(53142)??(12543)?10,所以前面带“+”号. (4) 因?(25314)??(13425)?7,所以前面带“-”号.

4.若n阶行列式D?det(aij)中元素aij(i,j?1,2,?,n)均为整数,则D必为整数.这一结论对吗?为什么?

解 这一结论正确,因整数经乘法运算后仍为整数,而D为元素的乘法的代数和,因此结果仍为整数.

5.证明:若n阶行列式中有n2?n个以上的元素为零,则该行列式值为零.

证明 因n阶行列式中有n2个元素,而有n2?n个以上元素为零,故不为零的元素的个数小于n.从而,在行列式展开式中的n个元素的乘积项中至少有一个元素为零,所以乘积为零,代数和也为零,故该行列式的值为零.

6.用行列式定义计算下列行列式:

0010(1)

00100?100011101011011010000000?00010??; (2);

02?10?00?00?; (4)0na11a21?an1????a1,n?1a2,n?1?0a1n0?0(3)

?n?10.

??00解 (1)在展开式?(?1)a1p1a2p2a3p3a4p4中,不为0的项取自于

a13?1,a22?1,a34?1,a41?1,

而?(3241)?4,所以行列式值为(?1)1?1?1?1?1.

(2)在展开式?(?1)a1p1a2p2a3p3a4p4中,取a4p?a43?1,则a3p取为

434????a3p3?a32?1?a2p2?a24?1,则?,a1p1取为a11?1,除此之外的项均为0.即行列式 ?a?a?1a?a?1??3422?2p2?3p3D?(?1)a11a24a32a43?(?1)a11a22a34a43,

??而 ?(1423)?2,?(1243)?1, 所以 D?(?1)?(?1)?0.

(3)在展开式?(?1)a1p1a2p2?anpn中,不为0的项取为

a1,n?1?1,a2,n?2?2,?,an?1,1?n?1,ann?n,

3

?2而 ?((n?1)(n?2)?1n)?(n?2)(n?1)(n?2)(n?1)2,

所以 D?(?1)?2n!.

(4)在展开式?(?1)a1pa2p?anp中,不为0的项取a1na2,n?1?an1ann.而

12n?(n(n?1)(n?2)?1)?n(n?1)2,

n(n?1)所以 D?(?1)2a1na2,n?1?an1.

习 题 1-3

a11a12a131.设D?a21a22a23?a?0,据此计算下列行列式: a31a32a33a31a32a33a11ka12a13(1)a21a22a23; (2)a21ka22a23; a11a12a13a31ka32a332a212a222a232a113a13?5a12?2a12(3)3a113a123a13; (4)2a213a23?5a22?2a22. 4a314a324a332a313a33?5a32?2a32a31a32a33a12a13解 (1)a21a22ar1?ra11323?a21a22a23??a; a11a12a13a31a32a33a11ka12a13a12a13(2)a21ka22ara112?k23a22a23?ka, a31ka32a(k?0)ka2133a31a32a33当k?0时,结论仍成立.

2a3ar1?3212a222a2313a11(3)3a3ar3a113a121?r22ar2?211123a13?2a212a2223 (?24)a214a314a4a4ar3?432334a314a3233a312a113a13?5a12?2a12113a13?2a12(4)2a213a23?5a22?2ac52?222c2a32a213a23?2a22 2a313a33?5a32?2a322a313a33?2a32c1?2a11a13a12a11a12

ca132?3c12a21a23ac2?c32212a21a22a23?12a. 3?(?2)a31a33a32a31a32a332.用行列式性质计算下列行列式:

4

a12a13a22a23??24a.a32a33