线性代数第一章习题答案 联系客服

发布时间 : 星期一 文章线性代数第一章习题答案更新完毕开始阅读088fbe6eaf1ffc4ffe47acb8

10a1b1a20??an?10rn?1i?r1i?2,3,?,n00b2?0??bi.

????i?1000?bn?1abb?ba?(n?1)bbb?bbab?bna?(n?1)ba0?b(3)bba?bc1??cii?2a?(n?1)bba?b?b ????????bbb?aa?(n?1)bbb?aa?(n?1)bbb?br0a?b0?0i?r1i00

?2,?,n0a?b?????000?a?b?[a?(n?1)b](a?b)n?1. ?a1a10?000?a2a2?00(4)

?????

000??an?1an?1111?11?a100?00c?c0?a20?00i?1ii?1,2,?,n?1????? 000??an?10123?n?1nn?1?(?1)n?1n?ai.

i?1a1a2a3?an?1ana1a1?a2?xa3?an?1an(5)a1a2a2?a3?x?an?1an?????a1a2a3?an?2?an?1?xana1a2a3?an?1an?1?an?x9

a10ri?r10a2a1?x0?00a30a2?x?00???an?100?an00?0an?1?xi?2,3,?,n?00

??an?2?x0?a1(a1?x)(a2?x)?(an?1?x).

6.解下列方程:

112(1)

122113359?x???22?x332211112?x?11?0;

111?111?1(n?1)?x?0.

11?x(2)

1?111?11??(n?2)?x1解

112?x332223359?x122121r2?r10r4?r320211?x302223054?x2(1)因

1222112010

?(1?x)(4?x)?3(x?1)(4?x)?0

所以解为 x??1,x??2.

111?0?x0?0001?x?00????ri?r1100?(n?3)?x0100?0(n?2)?x(2)因左边

0i?2,3,?,n?

00??x(1?x)?[(n?2)?x]?0,

所以解为 x?0,1,2,?,n?2.

习 题 1-4

12042231中元素3和4的余子式和代数余子式. ?304?8,3的代数余子式A13?(?1)1?31.求行列式D?22解 3的余子式M13?10

M13?8.

4的余子式M32?1231??5,4的代数余子式A32?(?1)3?2M32?5.

12a11a21a3112a11a21a313a12a22a323a12a22a324a13a23a334a13a23a33?1?(?1)?122.已知D?000a11a12a22a32a11a12a22a32a13a23. a33a13a23?a33,求a21a31解:因为D?0001?1a21a3112,

a11a12a22a32a13a23?a33所以 a21a3112.

3.已知四阶行列式D的第3行元素依次为2,2,1,?1,它们的余子式依次为5,2,3,4,求行列式D. 解 将行列式D按第三行元素降阶展开,有

D?a31A31?a32A32?a33A33?a34A34 ?2?(?1)3?1?5?2?(?1)3?2?2?1?(?1)3?3?3?(?1)?(?1)3?4?4?13

4.设四阶行列式的第二行元素依次为2,x,1,0,其余子式分别为2,6,?2,y,第三行的各元素的代数余子式分别为3,6,1,5,求此行列式.

解 因a21A31?a22A32?a23A33?a24A34?0,即2?3?6x?1?1?0?5?0, 所以 x??76.

从而 D?a21A21?a22A22?a23A23?a24A24

?2?(?1)2?1?2?x?(?1)2?2?6?1?(?1)2?3?(?2)?0?(?1)2?4?y

??2?6x??2?7??9.

5.按第三行展开并计算下列行列式:

120?1231?10420?5a11a21a12a22a32a42a52a13a23000a14a24000a15a250. 00(1)

131; (2)a31a41a51231013?342?(?1)?(?1)?520242?0?(?1)?52?311113?431020242 ?531 0解:(1)原式?3?(?1)3?102?(?1)?(?1)1111??18?12?18??24.

11

a12a13a2300a14a2400a15a2500?a23?(?1)3?2a11a21a41a51a13a2300a14a2400a15a2500(2)原式=a31?(?1)3?1a22a42a52

?0?A33?0?A34?0?A35

a13?a31a42a230a14a240a150a130a14a240a15a25 ?0. 0a25?a23a41a23 6.证明下列各等式:

a2aba?b1b2 (1)2a132b?(a?b);

111bbb241ccc241ddd0?1?0??a2(2)

aaa2424?(a?b)(a?c)(a?d)(b?c)(b?d)(c?d)(a?b?c?d);

x0?1x?0an?1??00?xa200??1x?a12(3)?0an?x?a1xnn?1???an?1x?an.

an?2c2?c1c3?c1ab?ab?a0a1b?a22证明 (1)左边2a12b?2a?(?1)033?1ab?ab?a2b?a222b?2a

?(b?a)(b?a)b?a2?(a?b)?右边.

(2)方法一

10b?ab?ab?a4224240c?ac?ac?a24240d?add?a?a24左边?aaa24ci?c1i?2,3,42b?ab?a22222c?ac?a2222d?ad22?a222

b(b?a)1d?ac(c?a)d(d?a)1?(b?a)(c?a)(d?a)21c?ac(c?a)122b?ab(b?a)

0d?bd(d?a)0c?bc2?c1c3?c1(b?a)(c?a)(d?a)2b?ab(b?a)2

2c(c?a)?b(b?a)2d(d?a)?b(b?a)212