环境化学练习题课后习题自己做做看答案 联系客服

发布时间 : 星期日 文章环境化学练习题课后习题自己做做看答案更新完毕开始阅读0ad98b1626fff705cd170ac7

第四章 土壤环境化学

一、填空

1、重金属在土壤-植物体系中的迁移过程与 重金属 的种类、价态、存在形态及 植物 的种类、特性有关。

2、Cr(VI)与Cr(Ⅲ)比较, Cr(VI) 的迁移能力强, Cr(VI) 的毒性和危害大。 3、重金属污染土壤的特点: 形态多变,价态不同毒性不同;金属有机态毒性大于无机态;金属羰基化合物常剧毒 , 产生毒性效应的浓度范围低,对人体的毒性是积累性的 , 迁移转化形式多,物理化学行为多具可逆性,属于缓冲型污染 , 微生物不能降解,反而会毒害微生物或者使之有机化,增强毒性 。 4、土壤污染的特点:隐蔽性、累积性、复杂性 三、问答题

T1土壤有哪些主要成分?他们对土壤的性质与作用有哪些影响?【P266-269】 答:(1)土壤矿物质:A、原生矿物 B、次生矿物。土壤矿物质直接影响土壤的理化性质,是植物营养元素的重要来源

(2)土壤有机质:是土壤形成的标志,对土壤的性质有很大影响。

(3)土壤水分:既是植物养分的主要来源,也是进入土壤的各种污染物向其他环境圈层迁移的媒介。

(4)土壤空气:与大气组成基本相似,主要成分是N2、O2和CO2 。①土壤空气存在于相互隔离的土壤孔隙中,是一个不连续的体系;②在O2,和CO2含量上有很大的差异。土壤空气中CO2含量比大气中高得多。大气中CO2含量为0.02%-0.03%,而土壤空气中CO2含量一般为0.15%一0.65%,甚至高达5%,这主要由于生物呼吸作用和有机物分解产生。氧的含量低于大气。土壤空气中水蒸气的含量比大气中高得多。土壤空气中还含有少量还原性气体,如CH4、H2S、H2、NH3等。如果是被污染的土壤,其空气中还可能存在污染物。

T2什么是土壤的活性酸度与潜在酸度?试用两者的关系讨论我国南方土壤酸度偏高的原因 答:根据土壤中H+的存在方式,土壤酸度可分为活性酸度与潜性酸度两大类。

(1)活性酸度:土壤的活性酸度是土壤溶液中氢离子浓度的直接反映,又称有效酸度,通常用pH表示。

(2)潜性酸度:土壤潜性酸度的来源是土壤胶体吸附的可代换性H+和Al3+。当这些离子处于吸附状态时,是不显酸性的,但当它们经离子交换作用进入土壤溶液后,即可增加土壤溶液的H+浓度,使土壤pH值降低。

南方土壤中岩石或成土母质的晶格被不同程度破坏,导致晶格中Al3+释放出来,变成代换性Al3+,增加了土壤的潜性酸度,在一定条件下转化为土壤活性酸度,表现为pH值减小,酸度偏高。

T3土壤的缓冲作用有哪几种?举例说明其作用原理。

答:土壤缓冲性能包括土壤溶液的缓冲性能和土壤胶体的缓冲性能:

(1)土壤溶液的缓冲性能:土壤溶液中H2CO3、H3PO4、H4SiO4、腐殖酸和其他有机酸等弱酸及其盐类具有缓冲作用。以碳酸及其钠盐为例说明。向土壤加入盐酸,碳酸钠与它生成中性盐和碳酸,大大抑制了土壤酸度的提高。

Na2CO3 + 2HCl2NaCl + H2CO3

当加入Ca(OH)2时,碳酸与它作用生成难溶碳酸钙,也限制了土壤碱度的变化范围。

H2CO3 + Ca(OH)2CaCO3 + 2H2O 土壤中的某些有机酸(如氨基酸、胡敏酸等)是两性物质,具有缓冲作用,如氨基酸既有氨基,又有羧基,对酸碱均有缓冲作用。

NH2RCHCOOH+ HClRCHCOOH NH3ClNH2RCHCOOH+ NaOHRCHNH2+ H2OCOONa

(2)土壤胶体的缓冲作用:土壤胶体吸附有各种阳离子,其中盐基离子和氢离子能分别对酸和碱起缓冲作用。

对酸缓冲(M-盐基离子):

土壤胶体 M+HCl土壤胶体 H+MCl

对碱缓冲:

土壤胶体 H+MOH土壤胶体 M+H2O

Al3+对碱的缓冲作用:在pH小于5的酸性土壤中,土壤溶液中Al3+有6个水分子围绕,当OH增多时,Al3+周围的6个水分子中有一、二个水分子离解出H+,中和OH-:

2Al(H2O)63 + 2OH

[Al2(OH)2(H2O)8]4+ + 4H2O

T4什么是盐基饱和度?它对土壤的性质有何影响?【P274】

答:土壤交换性阳离子中盐基离子所占的百分数称为盐基饱和度(BS)。

酸基离子:H+、Al3+ 盐基离子:K+、Na+、Ca2+、Mg2+等 BS真正反映土壤有效(速效)养分含量的大小,是改良土壤的重要依据之一。土壤吸附性阳离子,根据其解吸后的化学特性可区分为致酸的非盐基离子(如氢和铝离子)与非致酸的盐基离子(如钙、镁、钠等)两大类。当土壤胶体所吸附的阳离子基本上属于盐基离子时,称为盐基饱和土壤,呈中性、碱性、强碱性反应;反之,当非盐基离子占相当大比例时,称为盐基不饱和土壤,呈酸性或强酸性反应。土壤盐基饱和度以土壤的交换性盐基总量占土

壤阳离子代换量的百分比表示。盐基饱和度的大小,可用作施用石灰或磷灰石改良土壤的依据

T5试比较土壤阳、阴离子交换吸附的主要作用原理与特点。【P273-274】 答:阳离子原理:

1电荷数:离子电荷数越高,阳离子交换能力越强。 特点:○

2离子半径及水化程度:同价离子中,离子半径越大,水化离子半径就越小,因而具 ○

有较强的交换能力。

阴离子原理:土壤中带正电的胶体所吸附的阴离子与溶液中的阴离子发生交换。 特点:能与胶体微粒或溶液中的阳离子形成难溶性程佃而被强烈吸附。

T6土壤中重金属污染向植物体内转移的主要方式及影响因素有哪些?【P280-282】 答:主要方式:

(1)被动转移 脂溶性物质从高浓度一侧向低浓度侧,

顺浓度梯度扩散,通过有类脂层屏障的生物膜。扩散速率与有机物的化学性质、分子体积或在液体pH条件下离解性有关被动扩散不耗能,不需载体参与,因而无竞争性抑制、特异性选择和饱和现象

(2)主动迁移 在需消耗一定的代谢能量下,一些物质可在低浓度侧与膜上高浓度的特异性蛋白载体结合,通过生物膜至高浓度侧解离出原物质,所需代谢能量来自膜的三磷酸酰苷酶分解三磷酸酰苷(ATP)成二磷酸酰苷(ADP)和磷酸时所释放的能量。 影响因素:

(1)植物种类 不同植物种类或同种植物不同植株从土壤吸收转移重金属的能力不同 (2)土壤种类 土壤的酸碱性和腐殖质含量均可影响重金属向植物体内转移的能量。 (3)重金属形态 如CdSO4、Cd3(PO4)2和CdS 三种不同形态的镉在土壤中,实验发现对

水稻生长的抑制与镉的溶解度有关,此外土壤pH值、pE值的变化都可影响植物对重金属的吸收

(4)重金属在植物体内的迁移能力 Cd和Zn在水稻体内的迁移能力不同

Cd:大于1 mg/kg 糙米中Cd含量急剧增加 Zn:小于250 mg/kg 糙米中Zn含量几乎不变

T7植物对重金属污染产生耐受性作用的主要机制是什么?

答:不同种类的植物对重金属的耐性不同,同种植物由于其分布和生长的环境各异可能表现出对某种重金属有明显的耐性。

(1)植物根系通过改变根系化学性状、原生质泌溢等作用限制重金属离子的跨膜吸收。 (2)重金属与植物的细胞壁结合,而不能进入细胞质影响细胞代谢活动,使植物对重金属表现出耐性。

(3)酶系统的作用。耐性植物中酶活性在重金属含量增加时仍能维持正常水平,此外在耐性植物中还发现另一些酶可被激活,从而使耐性植物在受重金属污染时保持正常代谢过程。

(4)形成重金属硫蛋白或植物络合素,使重金属以不具生物活性的无毒螯合物形式存在,降低了重金属离子活性,从而减轻或解除其毒害作用。

T8举例说明影响农药在土壤中进行扩散和质体流动的因素有哪些?

答:(1)影响农药在土壤中扩散的因素主要是土壤水分含量、吸附、孔隙度、温度及农药本身的性质等:

①土壤水分含量:研究表明林丹的汽态和非汽态扩散情况随土壤水分含量增加而变化。 ②吸附:土壤对农药的吸附改变了其扩散的情况,如土壤对2,4-D的化学吸附,使其有效扩散系数降低了,两者呈负相关关系。

③土壤紧实度:土壤紧实度对农药的扩散的情况有影响是因为对于以蒸汽形式进行扩散的化合物来说,增加紧实度就降低了土壤孔隙率,扩散系数就自然降低了。如二溴乙烷、林丹等农药在土壤中的扩散系数随紧实度增加而降低。

④温度:温度增高的总效应是使扩散系数增大。

⑤气流速度:气流速度可直接或间接地影响农药的挥发。如果空气的相对湿度不是100%,那么增加气流就促进土壤表面水分含量降低,可以使农药蒸汽更快地离开土壤表面,同时使农药蒸汽向土壤表面运动的速度加快。

⑥农药种类:不同农药的扩散行为不同。如有机磷农药乐果和乙拌磷在Broadbalk粉砂壤土中的扩散行为就是不同的。

(2)影响农药在土壤中质体流动的因素有农药与土壤的吸附、土壤种类和农药种类等。

①农药与土壤吸附:非草隆、灭草隆、敌草隆、草不隆四种农药吸附最强者移动最困难,反之亦然。

②土壤种类:土壤有机质含量增加,农药在土壤中渗透深度减小;增加土壤中粘土矿物的含量,农药的渗透深度也减小。

③农药种类:不同农药在土壤中通过质体流动转移的深度不同。如林丹和DDT。

T9比较DDT和林丹在环境中迁移转化与归趋的主要途径与特点。

答:DDT和林丹迁移转化、归趋主要途径与特点比较如下表所示: 迁移转化、归趋途径 1)在土壤中移动不明显,易被吸附 2)通过根系渗入植物体 DDT 3)在土壤中按还原、氧化和脱氯化氢等机理被微生物降解 4)光解 1)从土壤和空气转入水体 林丹 2)挥发而进入大气 3)在土壤生物体内积累 特点 1) 不溶于水,高亲脂性,易通过食物链放大,积累性强 2)挥发性小,持久性高 3)在缺氧和高温时降解速度快 4)南方水田里DDT降解快于北方 1) 易溶于水 2) 挥发性强,持久性低 3) 在生物体内积累性较DDT低