基于matlab谐波抑制的仿真研究(毕设) 联系客服

发布时间 : 星期日 文章基于matlab谐波抑制的仿真研究(毕设)更新完毕开始阅读0bde7a955f0e7cd185253654

2 有源电力滤波器及其谐波源模型研究

2.1 谐波的基本概念 2.1.1 谐波的定义

电力系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,而这部分分量就称为电网谐波。谐波通常是指一个周期电气量的正弦波的分量,其频率为基波频率的整数倍。谐波频率与基波频率的比值 ( n =f n / f l ) 称为谐波次数。如我国电力系统的额定工作频率为50Hz,故其2 次谐波为100 Hz,其3 次谐波为150 Hz,其4 次谐波为200 Hz??电网中有时也存在非整数倍次数的分量,称为非谐波或分数谐波。谐波实际上是一种干扰量,污染电网,影响电能质量。 2.1.2 谐波的数学表达

供用电系统中,通常认为电网稳态交流电压和交流电流呈正弦波形。在进行谐波分析时,正弦电压通常由下数学式表示:

u(t)?2Usin(?t??) (2-1)

式(2.1)中:U为电压有效值,?为初相角,?为角频率。 正弦电压施加在线性无源元件电阻、电感和电容上,其电源和电压分别为比例、积分和微分关系,仍为同频率的正弦波。但当正弦电压施加在非正弦电路上时,电流就变为非正弦波,非正弦电流在电网阻抗上产生压降,会使电压波形也变为非正弦波。当然,非正弦电压施加在线性电路上时,电流也是非正弦波。

理论上任何周期性波形都可以分解成傅立叶级数形式,称为谐波分析或频域分析。谐波分析是计算周期性畸变波形的基波和谐波的幅值和相角的基本方法。对于周期为T=2?/?的非正弦电压U,一般满足狄力赫利条件,可以分解为如下形式的傅立叶级数:

u(?t)?a0???ancos(n?t)?bnsin(n?t)? (2-2)

n?1?式中(2-2):

1a=

2?0

?2?02?u(?t)d(?t) (2-3)

u(?t)cos(n?t)d(?t) n=1,2,3?? (2-4) u(?t)cos(n?t)d(?t)n=1,2,3?? (2-5)

1a=

2?n

??01b=

2?n

2?0在傅立叶级数中频率的分量称为谐波,均以非正弦电压为例,频率为1/T的分量称为基波,大于谐波次数为基波频率和基波频率的整数比。以上公式及定义均以非正弦电压为例,对于非正弦电流的情况也完全适用,把式中u??t?改成i??t?即可。

2.1.3电力系统谐波标准

由于电网中的谐波电压和电流会对电网本身和用电设备造成根大的危害,所以必须限制谐波电流流入电网和控制谐波电压在允许的范围内,以保证供电质量。世界许多国家都发布了限制电网谐波的国家标准,或由权威机构制定限制谐波的规定。

各级电网的谐波水平一般用谐波电压含有率或谐波畸变率来反映。国际大电网会议(CIGRE)和国际电工委员会(IEC)都成立了专门工作组拟定电力系统和电工产品的谐波标准,很多国家对谐波也制定了相应的国家标准,一些国家的电压总谐波畸变率的大致范围为:

低压电N(

高压电网(84kV及以上),一般1?1.5%,个别2%.--5%。

我国原水利电力部于1984年根据原国家经济委员会所批的《全国供用电规则》的规定,制定并发布了SDl26.84《电力系统谐波暂行规定》。在此基础上,系统地研究了标准的有关问题,结合国情,吸取国外谐波标准研究成果的基础上于1993年又发布了GB/T14549.93《电能质量公用电网谐波》,该标准从1994年3月1日开始实施。

表2.1公用电网谐波电流(相电流)限值

2.2 谐波的产生

谐波的产生形式是多种多样的。当电力系统向非线性设备及负荷供电时,这些设备及负荷在传递、变换、吸收系统发电机所供给的基波能量的同时,又把部分基波能量转换为谐波能量,向系统注入大量的高次谐波。 电力系统稳态方式下的谐波都来自于各种各样的谐波源。谐波源是指各类特定的用电设备,即非线性用电设备,或称非线性电力负荷。它们是电力系统中某些地区或网络出现严重谐波影响的主要原因。

电力系统中大量的变压器群和并联(铁芯)电抗器是重要的谐波源。虽然变压器个体一般产生的谐波较小或很小,但其群体产生的谐波总和则相当大。电网中的饱和电抗器和可控电抗器有时也是谐波源,影响着电能质量。

需要指出的是,在谐波潮流分析中,普遍不把发电机看作谐波源。因为发电机虽然也产生主要构成零序分量的三次谐波,但基本上不存在三次谐波端电压,因此不向电网注入三次谐波。大、中型发电机产生的其他次谐波电动势也都很小,而电力系统承受谐波主要依靠这些发电机的巨大短路容量。因此,发电机更多的是被看作是吸收谐波的末端支路。

超高压输电线的电晕也产生主要构成零序分量的三次谐波电流,但其值常小

到难以测出。故在分析电网谐波问题时,一般不必考虑线路电晕谐波,但需要考虑线路的谐频阻抗和谐频导纳对谐波的影响,例如放大谐波。

综上所述,谐波源即为各类非线性用电设备、变压器和各类铁芯电抗器。主要可以

归纳为以下几类:

(1)变压器。输配电系统中,谐波主要产生于电力变压器。由于变压器铁心的饱和,磁化曲线的非线性,再加上设计变压器时为了考虑其经济性,不得不将其工作磁密选择在磁化曲线的近饱和段上,这样就使得磁化电流呈尖顶波形,导致其含有奇次谐波。

谐波电流的大小与磁路的结构形式、铁心的饱和程度有关。铁心的饱和程度越高,变压器工作点偏离线性越远,谐波电流也就越大。

(2)电力电子装置。由电力电子装置产生的谐波在所有谐波中所占有的比例是很大的,有将近40%,是最大的谐波源。其主要为各种交直流变流装置(整流器、逆变器、斩波器、变频器)以及双向晶闸管可控开关设备等。由于晶闸管整流装置采用移相控制,从电网吸收的是残缺的正弦波,从而留在电网中的也是另一部分残缺的正弦波,其中就含有大量的谐波成分。如果整流装置为单相整流电路,在接感性负载时则含有奇次谐波电流成分,其中三次谐波的含量可达基波的30%;在接容性负载时则含有奇次谐波电压成分,其谐波含量与电容值成正比。如果整流装置为三相全控桥6 脉整流器,则变压器原边及供电线路上含有五次及以上奇次谐波电流成分;如果是12 脉冲整流器,也还有11 次及以上奇次谐波电流成分。

(3)电弧炉。通常所谓的电弧炉是指用于钢铁冶炼的交流电弧炉。在谐波源分类上,直流电弧炉有整流器馈电,故应列入电力电子装置。大型电弧炉的发展方向是采用更经济有效的直流电弧炉。铁合金矿石炉、电石炉和电弧炉虽都采用石墨电极来注入熔化电流,但用电特性有很大差别。

(4)低压电网供电的各种电器设备。我们日常用到的一些设备含有非线性元件,故会产生谐波电流,这些设备主要有电视机、节能灯、充电器、电冰箱、微波炉、电磁炉、洗衣机、计算机、激光打印机、各种医疗和科研用的仪器和设备等等。还有空调用压缩机、高层建筑用的大型电梯等,它们大都是用晶闸管、小功率的整流装置等电力电子元件,有的电器带小容量变压器。其励磁电流所占比例较大,虽然其单个容量小到只有数十瓦到数千瓦,但因其数量较多且分布很广,产生的高次谐波自然也会对电力系统造成影响,加重电力网的谐波污染。

2.3谐波的危害

谐波研究的意义,在于谐波的危害十分严重,主要表现在以下几个方面: (1)引起供电电压畸变。

(2)增加用电设备消耗的功率,降低系统的功率因数。

(3)增加了输电线路的损耗,缩短了输电线寿命。谐波电流一方面在输电线路上产生谐波压降,另一方面增加了输电线路上的电流有效值,从而引起附加输电损耗。对于架空线路而言,电晕的产生和电压峰值有关,虽然电压基波未超过规定值,但由于谐波的存在,当谐波电压与基波电压峰值重合时,其电压峰值可能超过允许值而产生电晕,引起电晕,损耗增加。对于电缆输电情况,谐波电压正比于其幅值电压形式增强了介质的电场强度,这会影响电缆的使用寿命。据有关资料介绍,谐波的影响将使电缆的使用寿命平均下降约60%。

(4)增加变压器损耗。谐波使变压器铜耗增大,其中包括电阻损耗、导体中的涡流损耗和导体外部因漏通而引起的杂散损耗。同时也使铁耗增加。另外,三的倍数次零序电流会在三角形接法的绕组内产生环流,这一额外的环流可能会使电流超过额定值。对于带不对称负载的变压器来说,如果负载电流中含有直流分量,会引起变压器磁路饱和,

从而大大增加交流励磁电流的谐波分量。

(5)对电容器的影响。谐波对电容器的危害是通过电效应、热效应和谐振引起谐波电流放大。国内外电网运行经验表明:受谐波影响而导致的电气设备损坏中电容器占有最大比例。谐波的存在往往使电压呈现尖顶波形,最不情况是谐波和基波电压峰值的叠加,峰值电压上升使电容器介质更容易发电。一般来说,电压升高10%,电容器寿命缩短1/2。由于谐波使通过电的电流增加,使电容器损耗增加,从而引起电容器发热和温升,加速老化。器温升每上升8℃,寿命缩短1/2。由于电容器的容抗与频率成反比,因谐波电压作用下的容抗要比在基波电压作用下的容抗小得多,从而使谐波电波形畸变比基波电压的波形畸变大得多,即使电压中谐波所占比例不大,也生显著的谐波电流。特别是在发生谐振的情况下,很小的谐波电压就会引起的谐波电流,导致电容器因过流而损害 (6)造成继电保护、自动装置工作紊乱。谐波改变继电器的工作特性,这与继电器的设计特点和原理有关。当有谐波畸变时,依靠采样数据或过零工作的数字继电器容易产生误差。谐波对过电流、欠电压、距离、频率继电器等均会引起误动、拒动、保护装置失灵或动作不稳定。

(7)增加感应电动机的损耗,使电动机过热。另外,当电动机的谐波电流频率接近某零件固有频率时,会使电动机产生机械振动,发出噪声。

(8)造成换流装置不能正常工作。当换流装置的容量达到电网短路容量的1/3.1/2或以上时,或者虽未达到此值而电网参数易引起较低次谐波次数(第2次至第9次)的谐波谐振时,交流电网电压畸变可能引起常规控制角的触发脉冲间隔不等,并通过正反馈而放大系统的电压畸变,使整流器工作不稳定,对逆变器可能发生连续的换相失败而无法工作。

(9)引起电力计量误差。用户为线性用户时,谐波潮流主要由系统注入线性用户,电能表计量的是该用户吸收的基波电能和部分或全部谐波电能,计量值大于基波电能,线性用户不但要多交电费,还要受到谐波破坏。用户为非线性用户时,用户除了自身消耗部分谐波,还向电网输送谐波,电能表计量电能时基波电能和扣除这部分谐波电能的部分和或全部和,计量值小于基波电能。因此,非线性用户(谐波源)不仅污染电网,还少交了电费。

(10)干扰通信系统。谐波通过电容祸合、电磁感应、电气传导对通信系统产生干扰,如损害通话清晰度、引起危害过电压等。 (11)对其它设备影响。谐波还会对以下设备产生影响:使断路器断弧困难,断路器开断能力降低;引起避雷器谐波过电压而损害;延迟或阻碍消弧线圈灭弧作用;电压互感器由于谐振而损害;增大中性线电流;电视机图像变坏、翻滚:收音机引起杂音;微机系统、数据传输系统、自动录波系统出现数据丢失、误动、误显示和波形异常等。 2.4 谐波的基本防治方法

(1)增加换流装置的脉动数。对具有整流元件的设备,尽量增加整流的相数或脉动数,可使特征谐波次数提高,较有效地消除低次特征谐波。如:整流相数为6 相时,5 次谐波电流为基波电流的18.5%,7 次谐波电流为基波电流的12%,