人教版高中物理选修3-5教案 联系客服

发布时间 : 星期三 文章人教版高中物理选修3-5教案更新完毕开始阅读0cfce1b0453610661fd9f478

取猴子和气球为系统,系统所受合外力为零,所以在竖直方向动量守恒,由动量守恒定

mh(M?m)h 所以软梯长度至少为L?h?H? MM例4:一质量为M的木块放在光滑的水平桌面上处于静止状态,一颗质量为m的子弹以速度v0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是:

律得:M·H=m·h,解得H?m2v0mMv0mv0A、mv0 ; B、 ; C、mv0- ;D、mv0-

M?mM?mM?m解析:题中要求子弹对木块的冲量大小,可以利用动量定理求解,即只需求出木块获得的动量大小即可。

对子弹和木块所组成的系统,满足动量守恒条件,根据动量守恒定律得: mv0=(M+m)v 解得:v?Mmv0 M?mmv0,由动量定理知子弹对木块的冲量大小为

M?mI?Mv? 应用动量守恒定律解题的一般步骤: 1.明确研究系统,判断是否守恒;

2.选取正方向,明确作用前总动量和作用后总动量; 3.由动量守恒定律p前=p后列方程求解

17.1 科学的转折:光的粒子

1.光电效应

用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电 器张角增大到约为 30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。 表明锌板在射线照射下失去电子而带正电。

概念:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。发射出来的电子叫做光电子。 2.光电效应的实验规律

(1)光电效应实验

如图所示,光线经石英窗照在阴极上,便有电子逸出----光电子。 光电子在电场作用下形成光电流。 概念:遏止电压

将换向开关反接,电场反向,则光电子离开阴极后将受反向电场阻碍作用。

5

当 K、A 间加反向电压,光电子克服电场力作功,当电压达到某一值 Uc 时,光电流恰为0。 Uc称遏止电压。根据动能定理,有 12mevc?eUc2

(2)光电效应实验规律

① 光电流与光强的关系饱和光电流强度与入射光强度成正比。 ② 截止频率νc ----极限频率

对于每种金属材料,都相应的有一确定的截止频率νc 。

当入射光频率ν>νc 时,电子才能逸出金属表面;当入射光频率ν <νc时,无论光强多大也无电子逸出金属表面。

③ 光电效应是瞬时的。从光开始照射到光电子逸出所需时间<10-9s。 3.光电效应解释中的疑难

光电效应实验表明:饱和电流不仅与光强有关而且与频率有关,光电子初动能也与频率有关。只要频率高于极限频率,即使光强很弱也有光电流;频率低于极限频率时,无论光强再大也没有光电流。光电效应具有瞬时性。而经典认为光能量分布在波面上,吸收能量要时间,即需能量的积累过程。

为了解释光电效应,爱因斯坦在能量子假说的基础上提出光子理论,提出了光量子假设。 4.爱因斯坦的光量子假设

(1)内容光不仅在发射和吸收时以能量为hν的微粒形式出现,而且在空间传播时也是如此。也就是说,频率为ν 的光是由大量能量为 ??hV的光子组成的粒子流,这些光子沿光的传播方向以光速 c 运动。

(2)爱因斯坦光电效应方程在光电效应中金属中的电子吸收了光子的能量,一部分消耗在电子逸出功W0,另一部分变为光电子逸出后的动能Ek。由能量守恒可得出:h??EK?W0

W0为电子逸出金属表面所需做的功,称为逸出功Ek为光电子的最大初动能。 (3)爱因斯坦对光电效应的解释:

①光强大,光子数多,释放的光电子也多,所以光电流也大。

②电子只要吸收一个光子就可以从金属表面逸出,所以不需时间的累积。 ③从方程可以看出光电子初动能和照射光的频率成线性关系 ④从光电效应方程中,当初动能为零时,可得极限频率:?c?W0 h爱因斯坦光子假说圆满解释了光电效应,但当时并未被物理学家们广泛承认,因为它完全违背了光的波动理论。

6

18.1 氢原子光谱

1.光谱

牛顿就发现了日光通过三棱镜后的色散现象,并把实验中得到的彩色光带叫做光谱。 讲述:光谱是电磁辐射(不论是在可见光区域还是在不可见光区域)的波长成分和强度分布的记录。有时只是波长成分的记录。

(1)发射光谱

物体发光直接产生的光谱叫做发射光谱。 发射光谱可分为两类:连续光谱和明线光谱。

连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱。只含有一些不连续的亮线的光谱叫做明线光谱。明线光谱中的亮线叫谱线,各条谱线对应不同波长的光。

炽热的固体、液体和高压气体的发射光谱是连续光谱。例如白炽灯丝发出的光、烛焰、炽热的钢水发出的光都形成连续光谱。如图所示。

稀薄气体或金属的蒸气的发射光谱是明线光谱。明线光谱是由游离状态的原子发射的,所以也叫原子的光谱。实践证明,原子不同,发射的明线光谱也不同,每种原子只能发出具有本身特征的某些波长的光,因此明线光谱的谱线也叫原子的特征谱线。如图所示。

(2)吸收光谱

高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。各种原子的吸收光谱中的每一条暗线都跟该种原子的原子的发射光谱中的一条明线相对应。这表明,低温气体原子吸收的光,恰好就是这种原子在高温时发出的光。因此吸收光谱中的暗谱线,也是原子的特征谱线。太阳的光谱是吸收光谱。如图所示。

(3)光谱分析

由于每种原子都有自己的特征谱线,因此可以根据光谱来鉴别物质和确定的化学组成。这种方法叫做光谱分析。

原子光谱的不连续性反映出原子结构的不连续性,所以光谱分析也可以用于探索原子的结构。

7

18.2 玻尔的原子模型

1.玻尔的原子理论

(1)定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。

(2)跃迁假设:电子从能量较高的定态轨道(设能量为Em)跃迁到能量较低的定态轨道(设能量为En,m>n)时,会放出能量为hv的光子,光子的能量由这两种定态的能量差决定,即 h??Em?En(h为普朗克恒量)。这个式子称为频率条件,又称辐射条件。反之,当电子

吸收光子时会从较低的能量态跃迁到较高的能量态,吸收的光子的能量同样由频率条件决定。

(3)轨道量子化假设:

围绕原子核运动的电子轨道半径只能是某些分立的数值,这种现象叫轨道量子化;不同的轨道对应着不同的状态,在这些状态中,尽管电子做变速运动,却不辐射能量,因此这些状态是稳定的;原子在不同的状态中具有不同的能量,所以原子的能量也是量子化的。 2、氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开

E1像的表示出来即能级图。能级公式:En?2(n=1,2,3,……)

n 其中n=1的定态称为基态。n=2以上的定态,称为激发态。

氢原子的能级图如图所示。

3.玻尔理论对氢光谱的解释 (1)基态和激发态

基态:在正常状态下,原子处于最低能级,这时电子在离核最近的轨道上运动,这种定态,叫基态。

激发态:原子处于较高能级时,电子在离核较远的轨道上运动,这种定态,叫激发态。 (2)原子发光:原子从基态向激发态跃迁的过程是吸收能量的过程。原子从较高的激发态向较低的激发态或基态跃迁的过程,是辐射能量的过程,这个能量以光子的形式辐射出去,吸收或辐射的能量恰等于发生跃迁的两能级之差。

说明:氢原子中只有一个核外电子,这个电子在某个时刻只能在某个可能轨道上,或者说在某个时间内,由某轨道跃迁到另一轨道——可能情况只有一种。可是,通常容器盛有的

8