生化习题及大纲 联系客服

发布时间 : 星期四 文章生化习题及大纲更新完毕开始阅读0f26da0f52ea551810a6873f

无论〔I〕是0.5、还是1.0mmol·L,在量取相应的横截距后代入上式,都可求出相同的

-1

Ki值。例如,当〔I〕=0.5mmol·L,横轴(X轴)截距为﹣5.0,根据上式,

-1

9.解答:几乎在所有情况下,竞争性抑制剂都结合在酶的活性部位上。十烷双胺是一种可逆抑制剂,表明它没有同酶共价结合。过量的乙酰胆碱(底物)通过使平衡向右移动而有效地从酶的活性部位取代了十烷双胺(竞争性抑制剂):

其净效应是无活性的EI复合物转变成ES复合物,后者然后转变成产物并释放出酶。 10.解答:二异丙基氟磷酸需要与乙酰胆碱酯酶活性部位的丝氨酸残基接近并共价结合才能使其失活。当有十烷双胺在酶的活性部位结合时,二异丙基氟磷酸与丝氨酸残基的接近受到限制。但是,十烷双胺的结合是可逆的,处在一种动态状态中;当它从活性部位释放出来时,或是底物(乙酰胆碱)结合到活性部位上,表现出催化活性,或是二异丙基氟磷酸结合到活性部位上而使其失活。在这种情况下,二异丙基氟磷酸迟早会使所有的酶分子失活。因此,十烷双胺只能降低酶失活时速度,即延缓酶的失活。

11.解答:酶-底物(ES)复合物以及酶-转换态(ES)的主要结合力包括电荷与电荷的相互作用、氢键、疏水相互作用和范德华力等。底物同酶的紧密结合形成的ES复合物

?

处于热力学陷阱,导致活化能增高,使应速度降低。酶同转换态的紧密结合降低了ES复合物的能量,减少活化能,从而使反应速度增高。

12.解答:当胰蛋白酶进行催化反应时,Asp与His的咪唑基之间形成低能障的氢键。由于Asn缺少与His的咪唑基形成氢键的羧基,因此,当Asp定点突变成Asn后,酶的活性会显著降低。

习题:

1.用阳离子交换树脂分离核苷酸时,核苷酸被洗脱的先后顺序是UMP→GMP→CMP→AMP而不是UMP→GMP→AMP→CMP。为什么?

2.在中性pH下,ApGpUpC应带什么电荷?为什么?其净电荷数是多少? 3.一段由1000bp构成的双股DNA,它含有58%(G+C)。该DNA嘧啶残基含量是多少?

4.DNA双螺旋模型的主要特征是,一条链上的碱基与另一条链上的碱基在同一个平面上配对。Watson和Crick提出,腺嘌呤只与胸嘧啶配对,鸟嘌呤只与胞嘧啶配对。出于什么样的结构考虑,使他们确定这样的配对方案?

5.从某种细菌细胞中分离到一种能切断双螺旋DNA的脱氧核糖C-2'—C-3'键的酶。该酶对超螺旋DNA有什么影响?

6.假定一闭合环状双股DNA由100个C和G交替出现的碱基对组成,当把它转移到高盐溶液中时,经受有B-型向Z-型转换。它的缠绕数、连环数以及超螺旋数会发生什么样的变化?

?

7.噬菌体T4在E.coil B株的培养物中很容易繁殖,但在E.coil K株的培养物中很难生存,为什么?

8.蛋白质的每个氨基酸是由三个连续的碱基规定的。编码一个50kD的蛋白质的B-DNA片段的外形长度是多少?假定该片段呈A-DNA形式,计算编码同一蛋白质的基因的外形长度。

9.胰核糖核酸酶的基因最小核苷酸对数是多少?为什么它的基因可能比你回答的核苷酸对数大得多?由于什么原因不能确定它的大小?

10.在碱性条件下使双螺旋DNA部分变性(即双螺旋结构中只有局部区域解链)。为什么碱性条件会引起双股DNA解链?你预测解链区域是富含G—C对还是富含A—T对?为什么?

11.某纯净的DNA制剂在标准条件下测得其Tm为85°C。请计算出该DNA的A+T的百分含量和它的浮力密度。

12.在DNA和RNA中,哪一种在pH11.5对降解具有较大的抗性?而在pH2.5,哪一种对降解具有较大的抗性?

13.从生物中分离的DNA被剪裁成大小均一的片段(约300 kb),加热使其分离成单链,然后冷却,使分开的链退火。请解释为什么大肠杆菌复性是均相过程而人的DNA的复性则是双相的(即较快的复性过程和较慢的复性过程)。

14.同源蛋白质的结构有什么特点?为什么你预期来自不同脊椎动物编码同源蛋白质的 DNA链彼此有杂交的内容?

15.现有两支试管,分别装有E.coli DNA和海胆DNA,但忘了给它们贴上标签。你将怎样进行鉴定?

已知:E.coli DNA:24.7%A; 25.7%C; 26%G; 23.6%T.

总A=T对:48.3%;总G≡C对:51.7%。 海胆:32.8%A;17.3%C;17.7%G;32.1%T. 总A=T对:64.9%;总G≡C对:35%.

16.虽然大多数RNA分子是单股的,但是它们对作用于双股RNA的核糖核酸酶的降解也是敏感的。为什么?

17.为什么没有一种核酸外切酶降解噬菌体θ×174 DNA? 习题解答:

1.解答:用离子交换树脂分离核苷酸主要是根据它们与树脂上相反电荷的静电结合力的 不同以及核苷酸疏水的碱基环与树脂骨架之间非极性吸附力的差异。本来,用阳离子交换树 脂分离这四种核苷酸时,按照它们解离的差异,应该是AMP在CMP之前被洗脱下来。但是,由于嘌岭环比嘧啶环同交换树脂的非极性吸附力大三倍,抵消了它们之间的电荷差异,故出现上面的冼脱顺序。

2.解答:在中性pH条件下,ApGpUpC应带负电荷。因为第一磷酸基在此pH条件 下完全解离而带负电荷,其净电荷数为-3。 3.解答:由于该DNA含有58%(G+C),它应含有42%(A+T)。根据碱基配对规则,每一个A都与相反链上的T配对,A与T的数目应该相等。因此,T的含量是21%,或者含有210个T。

4.解答:DNA分子的Watson-Crick模型是以两条多核苷酸链的糖-磷酸骨架呈有规律的螺旋结构为特征。这种螺旋结构有两个限制:①一条链上的碱基必须与另一条互补链的碱基形成氢键;②使碱基与糖-磷酸骨架相连接的糖苷键必须保持大约1.1nm的间隔。A与T、 G与C的配对符合这种限制。若A与G或G与T配对,其间隔太大,以至不适合这种螺旋(即糖苷键间的间隔大于1.1nm),产生不稳定的膨胀结构,若T与C配对,其间隔太小,若A与 C配对,在空间限制范围内不能形成氢键。只有A与T、G与C互补配对,才能保持其间隔约为 1.1nm,也才能在碱基对之间有效地形成氢键,Watson-Crick螺旋结构才稳定。 5.解答:由于这种酶只作用于双螺旋DNA的脱氧核糖C-2'—C-3'键,不能催化核苷酸间的磷酸二酯键的裂解,故对超螺旋DNA不产生影响。

6.解答:在由B-型向Z-型转换时,B-DNA每个右手螺旋10.5bp转变成Z-DNA的每个左手螺旋12bp。由于右手双螺旋是正向的,因此缠绕数的减少是△T=﹣(100/10.5)+(﹣100/12)=﹣17.9(轮)。它的连环数保持不变(△L=0)。由于没有共价键的断裂,因此它的超螺旋数的变化是△W=17.9轮

7.解答:一种可能的解释是E.coli K株含有识别该病毒DNA的特定的碱基顺序的限制性内切酶,这些酶能催化该病毒DNA降解。细菌本身的DNA则由于这些特定顺序被甲基化而受到保护,免于降解。由于该病毒在B菌株中很容易繁殖,因此B株可能缺少限制性内切酶,或者具有不同专一性的限制性内切酶,即它们不能识别这种病毒DNA。

8.解答:蛋白质中的氨基酸残基的平均分子量大约110。50 kD的蛋白质含有(50 000 D÷110)455个氨基酸。每个氨基酸是由三个连续的碱基编码,编码455个氨基酸需要3×455=1365个碱基(或核苷酸)。B-DNA的每个碱基对的长度是0.34nm,因此它的外形长度是0.34nm /bp×1345bp=0.46μm。在A-DNA中,每个碱基对的长度是0.28nm,它的外形长度是0.28nm /bp×1345bp=0.38μm。

9.解答: 胰核糖核酸酶含有124个氨基酸残基,因此编码它的基因的核苷酸对数至少应有 124×3=372(bp)。这一大小仅仅是从(有活性的)核糖核酸酶的氨基酸残基数确定的。但是,该酶的基因也许含有前导顺序或信号顺序的密码子(这在新产生的蛋白质分子中常常发现有这样的顺序)、多个插入顺序以及其他可能的调节顺序。因此,372bp是一个最小的值,实际的大小可能是它的几倍。

10.答:增高pH会引起核酸某些碱基和所有的磷酸基电离,其净结果是带负电荷的基团 增加。由于同种电荷的相互排斥,使得DNA双螺旋失去稳定而解链。稳定双螺旋结构的作用力之一是碱基对间的氢键,即A=T和G≡C。A=T对只有两个氢键,而G≡C对却有三个氢键。克服G≡C对间的三个氢键比克服A=T对间的两个氢键所需要的力大。因此,富含A=T对的区域解链比富含G≡C对的区域要容易。这种情况与加热引起的DNA变性相似。

11.解答: 由于Tm是在标准条件下测定的,因此可以利用下面的公式计算A+T的百分含量:

浮力密度可用下式计算:

12.解答:在pH11.5时,DNA具有抗性,而RNA则很容易被碱水解。因为在碱性条件下,RNA核糖C‘—2位上的﹣OH的诱导电子的效应,使磷原子带微弱的正电荷,有利于

碱(OH)的亲核攻击。因而RNA对碱是敏感的。但在DNA分子中C‘—2位上没有羟基(﹣OH),不能产生邻近基团参与效应,不会形成有利于碱攻击的2‘,3‘-环状中间结构,因而对碱有抗性。

在pH2.5时,RNA具有较大的抗性。因为RNA分子中的C—N不易被酸水解。而DNA在酸性条件下,易变成去嘌呤酸。这种差别是由于戊糖结构差别造成的。戊糖C‘—2位上的羟基存在与否对酸性条件下C—N的稳定性有很大的影响。

13.解答:实际上大肠杆菌几乎全部基因都是以单拷贝存在的,所以每个片段与它的互补链的重新结合以一种较均相过程进行。相反,人的基因组含有许多重复的DNA顺序。许多含有这些顺序的DNA片段找到彼此形成双链区(复性)的速度比单拷贝DNA顺序要快得多。这种单拷贝顺序在人的基因组中也存在,故可以观察到两个不同的复性过程。

14.解答:同源蛋白质,即来自不同物种、但有相同功能的蛋白质,有相同或几乎相同的多 肽链。来自不同物种的这样的肽链的许多相应部位被相同的(不变的)氨基酸占据。显然,编码这样的多肽链的基因在它们的核苷酸顺序中有某些相似性,即在多肽链中不变氨基酸出现在什么位置,编码这些氨基酸的密码子在它们的基因中也出现在相应的部位。因此,也可以预期在它们的基因中有“同源”区。当从这样两种同源生物中分离出的双螺旋DNA

被加热变性、混合,冷却后在两种DNA的同源部位将会形成杂交双螺旋。两种生物的关系越密切,在它们的DNA之间就会出现越多的杂交双螺旋区

15.解答:由于这两个样品的A=T和G≡C对的比例有显著的差别,若忘了给这两个样品贴标签,那么可以通过CsCl密度梯度离心鉴别它们。含G≡C对量高的样品的浮力密度比含A=T对量高的浮力密度大。当在有适当比重的CsCl溶液中离心时,将会给出两条不同位置的带。密度较大的(即距离心底近者)是E.coli DNA。

16.解答:虽然大多数RNA分于是单股的,但它们可通过自身的回折,在那些可以形成氢键的部位形成局部的双螺旋区。在这种双螺旋区内,碱基配对的规则是A与U、G与C。由于存在局部的双螺旋结构,因此,对专一于双股的核糖核酸酶的降解是敏感的。

17.解答:因为核酸外切酶需要作为底物的DNA或RNA具有游离的3‘-末端和5‘-末端,而θ×174 DNA是单股环状分子,没有游离的3‘-末端和5‘-末端。 习题:

1.卵白和卵黄含有蛋白质、糖和脂。如果卵被受精,它就会从单细胞转变成一个复杂的生物。从卵在孵化器中的生态系统考虑,根据该系统以及环境和宇宙的熵的变化,讨论这个不可逆的过程。确信你能十分清楚地界定系统和环境。你是怎样考虑的? 2. 一假想的反应(pH7、25℃、一个大气压):

A ←→ B+C

若A的最初浓度是0.2mol/L,在反应达到平衡时,A的浓度只剩下1%,求:①该反应的K'平;②该反应的△G0';③逆反应的△G0' 3.考虑下面的相互转换(25°C),

果糖-6-磷酸 ←→ 葡萄糖-6-磷酸

该反应的K'平为1.97。

①该反应的△G0'是多少?

②如果把果糖-6-磷酸的浓度调到1.5 mol·L-l,葡萄糖-6-磷酸的浓度调到0.5mol·L-1,△G是多少?

③△G0'和△G'为什么不同?

④在②给出的条件下,如果加入少量的酶加速这种转换,那么达到平衡时△G'将是多少?平衡时果糖-6-磷酸和葡萄糖-6-磷酸的浓度将是多少? 4.计算下面反应在生理条件下的自由能的变化:

磷酸肌酸 + ADP → 肌酸 + ATP

当该反应发生在神经元胞液中时,磷酸肌酸的浓度是4.7mM、肌酸的浓度是1.0mM、ADP浓度是0.20mM和ATP浓度是2.6mM。假定温度是25℃。已知磷酸肌酸水解时的△G0'=–43.0 kJ/mol;ATP合成需要输入30.5 kJ/mol。

32

5.如果把少量的、末端用放射性磷标记的ATP([γ-P]-ATP)加入到酵母抽提液中,在

32

几分钟时间内,大约一半的P放射活性出现在Pi中,但是,ATP的浓度保持不变。请解释。

323232

如果用[β-P]-ATP)代替[γ-P]-ATP做同样的实验,在同样的时间内,P的放射活性不出现在Pi中。为什么?

6.把ATP的水解与热力学不利的反应偶联起来,能显著改变该反应的平衡。①当△G0'=

-1

25000J·mol、温度为25℃时,计算能量上不利的生物合成反应A→B的Keq;②当把ATP的水解与反应A→B偶联时,计算该反应的Keq,并把该反应的Keq与①比较;③许多细胞把[ATP]/[ADP]的比例维持在400以上;当[ATP]︰[ADP]为400︰1以及在标准条件下Pi保持恒定时,计算[B]与[A]的比例。并把这个比例与未偶联时的比例进行比较。

7.在标准条件下,在pH7.0,ATP水解的△G0'为–30.5kJ·mol-1。如果ATP是在标准条件下、但在pH5时水解,所释放的自由能是更多还是更少?为什么? 8.在标准条件下,写出下面每对分子自发反应的方向:

① Cyt.f/Cyt.b5

②延胡索/酸琥珀酸 和CoQ/CoQH2

③α-酮戊二酸/异柠檬酸和NAD/NADH

+-+

已知:Cyt.f(Fe3) + e ←→ Cyt.f(Fe2) E0'=0.36 V

+-+

Cyt.b5(Fe3) + e ←→ Cyt.b5(Fe2)(微粒体) E0'=0.02 V

延胡索酸 + 2e ←→ 琥珀酸 E0'=0.031 V