Simulink下单机—无穷大仿真系统的搭建及系统故障仿真测试分析电气工程及其自动化毕业论文 联系客服

发布时间 : 星期一 文章Simulink下单机—无穷大仿真系统的搭建及系统故障仿真测试分析电气工程及其自动化毕业论文更新完毕开始阅读0f86e7a9aff8941ea76e58fafab069dc50224781

种运行情况下是暂态稳定的。反之,如果系统受到大的干扰后不能建立稳态运行状态,而是各发电机组转子间一直有相对运动,相对角不断变化,因而系统的功率电流和电压都不断振荡,以至整个系统不能再继续运行下去,则称为系统在这种运行情况下不能保持暂态稳定。

3.1 电力系统暂态稳定性分析

3.1.1 引起电力系统大扰动的原因

主要有以下几种:

(1)负荷的突然变化,如投入或切除大容量的用户等;

(2)切除或投入系统的主要原件,如发电机,变压器及线路等; (3)发生短路故障。

其中短路故障的扰动最为厉害,常以此作为检验系统是否具有暂态稳定的依据。而且短路故障中,单相接地短路故障最多。在发生短路的情况下,电力系统从一种状态激烈变化到另一种状态,产生复杂的暂态现象。在三相系统中,可能发生的短路有:三相短路、两相短路、两相接地短路和单相接地短路等。当动态电路从某一稳定状态转换到另一稳定状态时,一些物理量(如电容电压,电感电流等)并不会突变,而是需要一定时间。在这期间,电路将呈现出不同于稳态的特别现象,即电路的过渡过程或暂态现象。分析电路的暂态现象时,可建立电压电流的微分方程,并按初始来求解。 3.1.2 定性分析

在正常运行情况下,若原动机输入的机械功率为Pm,发电机输出的电磁功率就与原动机输入的机械功率相平衡,发电机的工作点应由P1和Pm线的交点确定,即为a点,与此对应的功率角为?0,见图3.2中虚线所示为不计阻尼作用的曲线,实线所示为计阻尼作用的曲线。?k'

6

图3.1 电力系统暂态稳定 图3.2电力系统暂态不稳定 在发生短路瞬间,由于不考虑定子回路的非周期分量,则周期分量的功率是可以突变的,于是发电机运行点有PI突然将为PII。又由于发电机组转子机械运动的惯性所致,功率角?不可能突变,仍为?0。那么运行点由a点跃降到短路时功-角特性曲线PII上的b点。达b点后,输入的机械功率Pm大于输出的电磁功率PIIb,不平衡净加速功率大于零。依转子运动方程式,于是转子开始加速,即???0,功率角?开始增大,???0,运行点将沿功-角特性曲线PII移动,设经过一段时间,当功率角增大至?c时,此时运行在c点,速度达到最大?max。若在c点事切除线路故障,在切除线路故障的瞬间,仍由于不考虑定子回路电流的非周期分量及机组转子的机械惯性,?为?c,运行点从PII上的c点突升到PIII上的e点,此时速度仍为?max。在达到e点后,机械功率Pm

7

率角?开始减小,运行点仍将沿功-角特性曲线PIII从f点向e、k点移动。在k点时有Pm=PIII?k,减速停止,则速度达最小为?min。但由于转子机械惯性作用,功率角?将继续减小,当过k点时Pm

当短路故障切除得迟些,?c更大时,在故障切除后,运行点沿功率PIII不断向功率角增大的方向移动过程中,虽然转子在不断减速,但运行点到达曲线PIII上的k'点时,转子的转速仍大于同步转速。于是运行点就要越过k'点,过了k'点后,情况发生逆转。由于Pm>PIII,发电机组转子又开始加速,而且加速度越来越大,功率转角?无限增大,发电机与系统之间将失去同步,系统暂态不稳定。其情况如图3.2所示。

MATLAB提供了常微分方程初值问题的数值解法,对于稳态一般用快速而准确的ode45函数,对于暂态一般用ode23函数。也可采用自适应变不长的求解方法,即当解的变化较快时,步长会自动的变小,从而提高计算精度。

3.1.3 提高电力系统稳定性的措施 1) 快速切除故障 2) 采用自动重合闸装置:

对应两种情况:①若系统发生瞬时故障,则可以通过自动化重合闸恢复到原来状态(电磁功率最大);②若为永久性故障,会使系统再次重合到故障上,对系统冲击较大。

3) 强行励磁:提高电磁功率,以增加减速面积。 4) 串联电容器的强行补偿

指故障时对健全线路强制提高补偿度的措施。

补偿的方法:如双回路运行,两组电容器组均投入。切除一条输电线后,线

8

路感抗从Xl/2→Xl,Xl为健全线路的电抗,由于电抗的下降,使切除故障线路后的电磁功率下降,加速面积增大,为减少加速面积,应通过减少健全线路的电抗来实现,即使在它上面串联电容器,同时切除一组,使其容抗从Xc/2→Xc。

5) 采用电气制动

指当系统中发生故障后迅速接入电阻以消耗发电机的有功功率(增大电磁功率),从而减少功率差额。

因为制动电阻在故障瞬时投入,因而使故障后P-δ曲线PII向上向左偏移。 欠制动:投入后减少的加速面积不足;

过制动:故障发生后,由于制动电阻的投入,加速面积很小,因而没有失步;

但是切除故障后,由于制动电阻同时被切除,因而PIII曲线不受制动电阻的影响。当在PII曲线较低位置切除故障时,仍可能出现与PT-PIII较大数值的较大的减速面积,因而仍可能在第二周波失稳。

6) 变压器中性点经小电阻接地

不对称接地短路故障时,产生零序电流。变压器中性点通过小电阻接地,则零序电流在中性点电阻上产生功率损耗,这部分功率消耗了一部分发电机的电磁功率,因而减小了转子的不平衡功率,有利于系统的暂态稳定。 7) 减少原电机输出的机械功率

由于转子运动切除故障后,减小作用在转子上的剩余功率,增大减速面积。减小原动机输出功率的措施有,以下两种措施对应的均为在切除故障的同时采取的措施。

*采用快速的自动调速系统或快速关闭进汽门,电磁功率不变,但是由于调速系统的作用,使机械功率相应减少,从而增大减速面积。

*切除连锁切机,在切除发电机组后,电磁功率下降,同时对应的机械功率下降,一般认为下降的机械功率较电磁功率多,因而减速面积增大。;

3.2 单机—无穷大系统原理

电力系统运行稳定分析中,常采用的模型是单机对无穷大系统,单机—无穷大系统认为功率无穷大,频率恒定,电压恒定,是工程上最常用的手段,

9