OFDM技术仿真(MATLAB代码) 联系客服

发布时间 : 星期六 文章OFDM技术仿真(MATLAB代码)更新完毕开始阅读1327eb6a284ac850ac0242a9

图1.2 OFDM载波

图1.3 OFDM子载波频谱

这种现象可以参见图1.3,图中给出了相互覆盖的各个子信道内经过矩形波形成型得到的符号的sinc函数频谱。在每个子载波频率最大值处,所有其他子信道的频谱值恰好为零。因为在对OFDM符号进行解调过程中,需要计算这些点上所对应的每个子载波频率的最大值,所以可以从多个相互重叠的子信道中提

5

基于MATLAB实现OFDM的仿真

取每一个子信道的符号,而不会受到其他子信道的干扰。从图1.3可以看出,OFDM符号频谱实际上可以满足奈奎斯特准则,即多个子信道频谱之间不存在相互干扰。因此这种一个子信道频谱出现最大值而其他信道频谱为零点的特点可以避免载波间的干扰(ICI)的出现。

1.2.4 DFT的实现

傅里叶变换将时域与频域联系在一起,傅里叶变换的形式有几种,选择哪种形式的傅里叶也变化由工作的具体环境决定。大多数信号处理使用DFT。DFT是常规变换的一种变化形式,信号在时域和频域上均抽样。由DFT的定义,时间上波形连续重复,因此导致频域上频谱的连续重复。快速傅里叶变换(FFT)仅是计算应用的一种快速数学方法,由于其高效性,使OFDM技术发展迅速。

对于N比较大的系统来说,式1-1中的OFDM复等效基带信号可以采用离散傅里叶逆变换(IDFT)方法来实现。为了叙述的简洁,可以令式1-1中的ts=0,并且忽略矩形函数,对于信号s(t)以T/N的速率进行抽样,即令t=kT/N (k=0,1,...,N-1),则得到:

sk?s(kT/N)?N?1?0diexp(j2?ik/N)?i(0?k?N?1) (1-5)

可以看到Sk等效为对di进行IDFT运算。同样在接收端,为了恢复出原来的数据符号di,可以对sk进行逆变换,即DFT得到:

di?N?1?0skexp(?j2?ik?i/N)(0?i?N?1)(1-6)

根据以上分析可以看到,OFDM系统的调制和解调可以分别由IDFT和DFT来代替。通过N点的IDFT运算,把频域数据符号di变换为时域数据符号Sk,经过射频载波调制之后,发送到无线信道中。其中每个IDFT输出的数据符号sk都是由所有子载波信号经过叠加而生成的,即对连续的多个经过调制的子载波的叠加信号进行得到的。在OFDM系统的实际运用中,可以采用更加方便快捷的IFFT/FFT。N点DFT运算需要实施N2复数乘法运算,而IFFT可以显著地降低运算的复杂程度。对于常用的基-2IFFT算法来说,其复数乘法次数进仅为(N/2)log2(N/2)。

6

1.2.5 保护间隔、循环前缀

应用OFDM的一个重要原因在于它可以有效地对抗多径时延扩展。把输入

数据流串并变换到N个并行子信道中,使得每一个调制子载波的数据周期可以扩大为原来数据符号周期的N倍。为了最大限度的消除符号间干扰,可以在每个OFDM符号之间插入保护间隔(GI),而且该保护间隔长度Tg一般要大于无线信道中的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔可以不插入任何信号,即是一段空白的传输时段。然而在这种情况下,由于多径传播的影响,会产生载波间干扰(ICI),即子载波之间的正交性被破坏,不同的子载波之间会产生干扰,这种效应如图1.4所示,每个OFDM符号中都包括所有的非零子载波信号,而且可以同时出现该OFDM符号的时延信号,图1.4给出了第i个子载波和第2个子载波之间的周期个数之差不再是整数,所以当接收机试图对第1个子载波进行解调时,第1个子载波会对第1个子载波造成干扰。同时,当接收机对第2个子载波进行解调时,也会存在来自第1个子载波的干扰。

在系统带宽和数据传输速率都给定的情况下,OFDM信号的符号速率将远远低于单载波的传输模式。例如在单载波BPSK调制模式下,符号速率就相当于传输的比特率,而在OFDM中,系统带宽由N个子载波占用,符号速率则为单载波传输的1/N。正是因为这种地符号速率使OFDM系统可以自然地抵抗多径传输导致的符号间干扰(ISI),另外,通过在每个符号的起始位置增加保护间隔可以进一步抵制ISI,还可以减少在接收端的定时偏移错误。这种保护间隔是一种循环复制,增加了符号的波形长度,在符号的数据部分,即将每个OFDM符号的后时Tg间中的样点复制到OFDM符号的前面,形成前缀,在交接点没有任何间断。因此讲一个符号的尾端复制并补充到起始点增加了符号的时间长度,图1.5显示了保护间隔的插入。

7

基于MATLAB实现OFDM的仿真 第二个子载波对第一个子载波带来的ICI干扰 保护间隔 FFT积分时间

图1.4 OFDM符号延迟

IFFT 符号N-1 复制 保护 间隔 FFT输出 保护 间隔 FFT Tg Ts FFT 时间 符号N 图1.5 OFDM符号形成过程 符号N-1 符号的总长度为Ts?Tg?TFFT其中Ts为OFDM符号的总长度,Tg为抽样的保护间隔长度,TFFT为FFT变换产生的无保护间隔的OFDM符号长度,则在接

8