《运动生理学》终极背诵版 联系客服

发布时间 : 星期一 文章《运动生理学》终极背诵版更新完毕开始阅读14347e40df80d4d8d15abe23482fb4daa58d1df6

红色,皮肤毛细血管的血液近似鲜红色,血浆和血清呈淡黄色。正常人全血的比重约为1.050-1.060之间,红细胞的比重为1.090-1.092,血浆的比重为1.025-1.034。全血的比重主要取决于红细胞的数量和血浆蛋白的含量。血浆的比重则与血浆蛋白的含量有关。

3.血液在血管内运行时,由于液体内部各种物质的分子或颗粒之间的摩擦而产生阻力,使血液具有一定的黏滞性。正常人血液的黏滞度为水的4-5倍,血浆的黏滞度为水的1.6-2.4倍。血液黏滞性主要取决于红细胞的数量和血浆蛋白的含量,另外也与血细胞形状及在血流中的分布特点、表面结构和内部状态、易变形性几它们之间的相互作用有关。

4.在血浆溶液中,促使水分子透过膜移动的力量称为血浆渗透压,其值为300mmol/L。渗透压的高低与溶质颗粒数目的多少呈正相关,而与溶质的种类及颗粒的大小无关。

5.正常人血浆pH值为7.35-7.45,人体生命活动所能耐受的最大pH变动范围为6.9-7.8。pH值的相对恒定有赖于血液内的缓冲物质以及正常的肺、肾功能。

2.试分析血液运载氧气和二氧化碳的方式?

1.运输是血液的基本功能。血液运载氧气是以物理溶解和化学结合的方式进行的。在血液中绝大多数氧气是与血红蛋白结合形式运载的。血红蛋白与氧的结合称为氧合。氧合过程不需要酶的参与。氧合的血红蛋白称为氧合血红蛋白。血红蛋白既能疏松的与氧结合在一起,又能可逆的和氧分离。在正常生理状态下,静脉血中的氧分压低,约为40毫米汞柱,而肺泡中的氧分压高达102毫米汞柱,因此,当静脉血流经肺泡毛细血管时,氧气经呼吸膜进入血液,与红细胞中的血红蛋白迅速与氧结合形成氧合血红蛋白。这时,静脉血变成富含氧气的动脉血,其氧分压可达100毫米汞柱,而当动脉血留经组织毛细血管时,由于组织的氧分压较低,只有30毫米汞柱,尤其是剧烈运动时肌肉组织的氧分压更低,约为15毫米汞柱,这时,血液中的氧合血红蛋白即氧离释放出氧气供组织细胞利用,同时,组织中的二氧化碳扩散进入血液,动脉血变成了二氧化碳分压高的静脉血。血红蛋白就是这样不断的在氧分压高的肺部通过氧合结合氧,在氧分压低的组织通过氧离释放氧,以实现其运载氧的功能。

2.血液中的二氧化碳也是以物理溶解和化学结合两种方式运载的,其中物理溶解约占5%,而以化学结合形式运输的约占95%。化学结合是以碳酸氢盐形式和氨基甲酸血红蛋白两种形式运输的。

3.氧解离曲线的特点有何生理意义?血氧饱和度的大小取决于血液中Po2的高低,反应血氧饱和度与氧分压之间关系的曲线称为氧解离曲线。它可以分为三段,分别有不同的意义。

1.氧解离曲线上段:曲线比较平坦,表明Po2在这个范围内变化对血氧饱和度的影响不大。 2.氧解离曲线中段:此段曲线较陡,表明在此范围内Po2稍有下降,便会引起血氧饱和度降低,HbO2

解离释放出更多的O2。3.氧解离曲线下段:曲线坡度更陡,表明Po2稍有降低,血氧饱和度就显著下降,大量的HbO2解离出O2。氧解离曲线下段坡度最大,表明了氧的贮备使机体能够适应组织活动增强时对O2的

需求。

4.试分析运动对氧解离曲线的影响?1.当人体进行剧烈运动时,肌肉产生大量的二氧化碳和H,这将降低Hb与氧气的亲和力,促使HbO2解离出更多的氧,满足运动时肌肉组织的代谢需求。此时Pco2和血液中H浓度增加,使氧解离曲线右移,Hb与氧气的亲和力减小,反之曲线左移,Hb与氧气的亲和力增加。

2.运动时,体温升高,组织的代谢加强,对氧的需求增加,这时Hb与氧气的亲和力减小,促使HbO2

释放氧气,有利于组织氧供应。此时,氧解离曲线右移,Hb与氧气的亲和力减小,反之曲线左移,Hb与氧气的亲和力增加,氧合作用加强。

3.当人体在缺氧剧烈运动或高原运动时,红细胞中的2,3—二磷酸甘油酸均会生成增加,会使氧解离曲线向右偏移,释放出更多的氧供给组织利用。

5.试述血液在维持内环境稳态中的作用?1.机体在代谢过程中不断的产生各种酸性物质和碱性物质,这些物质首先进入血液被血液中的缓冲对所缓冲,因此,正常人体内环境pH值能保持相对恒定,血液起着调节作用。血浆中的缓冲物质包括碳酸氢纳和碳酸、钠-蛋白质和氢-蛋白质、磷酸氢纳和磷酸二氢纳,其中以碳酸氢纳和碳酸最为重要。

2.人体在剧烈运动时,由于无氧代谢占优势,肌肉内产生大量的乳酸,血浆中的碳酸氢纳立即与其产生中和反应,形成碳酸,碳酸进一步分解,生成为水和二氧化碳,二氧化碳由肺排出体外,水被机体重新利用或由肾脏排出,从而缓冲了酸性物质,使pH值保持正常范围内。当主要来自于食物的碱性物质进入血浆后,碳酸则与之产生反应,过多的碳酸根可由肾脏排出,从而缓解了体内的碱性变化。

3.另外,血液对人体体温调节也具有一定的作用。血液在全身不不断的循环流动,可将各器官在代谢过程中产生的热量运送到身体各处,同时,也将部分热量运送到体表,促进机体热量的散失,以调节机体温度维持在正常范围之内。

1.血液的功能有哪些?1.运输功能,它是血液的基本功能,血液可以将氧气、营养物质和激素运输到组织细胞供其利用,同时又可将细胞产生的二氧化碳和各种代谢产物运输到排泄器官排出体外。2.维持内环境稳态的功能,机体在代谢过程中不断的产生各种酸性和碱性物质,这些物质首先进入血液,被血液中的缓冲对所缓冲,因此,正常人体内环境pH值能保持相对恒定,血液起到了调节作用。3.保护和防御功能,机体能抵抗外来微生物对机体的损害,对自身进行保护和防御,这是由血液中白细胞通过吞噬及免疫反应来实现。

2.人体运动时,影响氧解离曲线的因素有哪些?

1.Pco2和pH值:Pco2和血液中H浓度增加,均可使氧解离曲线右移,Hb与氧气的亲和力减小,反之曲线左移,Hb与氧气的亲和力增加。当人体进行剧烈移动时,肌肉产生大量的二氧化碳和H这将降低Hb与氧气的亲和力,促使HbO2解离出更多的氧,满足运动时肌肉组织的代谢需求。

+

+

+

+

2.温度:温度升高,氧解离曲线右移,Hb与氧气的亲和力减小,反之曲线左移,Hb与氧气的亲和力增加,氧合作用加强。运动时,体温升高,组织的代谢加强,对氧的需求增加,这时Hb与氧气的亲和力减小,促使HbO2释放氧气,有利于组织氧供应。

3.2,3—二磷酸甘油酸:2,3—二磷酸甘油酸含量的增加能降低Hb与氧气的亲和力,使氧解离曲线右移。当人体在缺氧剧烈运动或高原运动时,红细胞中的2,3—二磷酸甘油酸均会生成增加,使氧解离曲线向右偏移,释放出更多的氧供给组织利用。

1.何谓呼吸?呼吸过程由哪几个环节构成?1.机体在新陈代谢过程中,需要不断的从外界环境中摄取氧并排出二氧化碳。机体这种与环境之间的气体交换称为呼吸。

2.呼吸全过程包括三个相互联系的环节:外呼吸,指外界与血液在肺部实现的气体交换,它包括肺通气和肺换气。气体在血液中的运输。内呼吸,指血液通过组织液与组织细胞的气体交换。

2.试述胸内负压成因及其生理意义?在正常情况下胸内压总是低于大气压,因此称之为胸内负压,它是由肺的回缩力形成的。胸内负压可保持肺的扩张状态,维持正常呼吸,还可使胸腔内壁薄且扩张性大的静脉和胸导管扩张,从而促进血液和淋巴回流。运动时呼吸深度加大,胸内压起伏的幅度随之加大,这时促进静脉回流起到了极好的呼吸泵的作用。

3.人体有哪两种呼吸形式,分析憋气的利和弊,运动中如何合理运用?

1.人体主要的吸气肌为膈肌和肋间外肌。当膈机收缩时腹部随之起伏,肋间外肌收缩时胸壁随之起伏,因此以膈肌为主的呼吸称腹式呼吸,以肋间外肌收缩为主的呼吸称胸式呼吸。

2.憋气能反射性的引起肌张力加强,使胸廓固定,为上肢发力的运动获得稳定的支撑。但憋气时,胸内压呈正压,导致静脉血回流困难,心输出量减少,血压降低,致使心肌、脑细胞、视网膜供血不足,产生头晕、恶心、耳鸣及“眼冒金花”等感觉。

3.憋气结束后出现的反射性深吸气,使胸内压骤减,滞留于静脉的血液迅速回心,血压骤升。这对于儿童青少年的心脏发育和缺乏心力储备者或老年人的心血管功能会产生极为不利的影响。为此,憋气在运动中应用一定要谨慎。

4.你是怎样认识运动中过度换气的问题的?过度通气是指人体在运动时通气量超过合理深度的一种呼吸,在运动期待、焦虑以及呼吸紊乱时均可能出现过度通气的现象。过度通气使血中的二氧化碳和氢离子浓度降低,降低了肺通气的动力,但不会使血液中的氧含量升高。例如游泳运动员在短距离比赛前,为了减少呼吸窘迫的痛苦和在屏息时有利于爆发力的发挥,通常要进行过度通气,虽然这样能使他们在比赛的前8-10秒对呼吸的欲望减弱,但是肺泡与动脉血中氧含量严重下降,不利于肌肉能量物质的氧化,反而会影响运动成绩。因此,从生理学的角度考虑不提倡在运动中进行过度通气。

6.如何评价肺通气功能?1.肺通气是指肺与外界环境之间的气体交换的过程。

2.可以通过肺容积、深吸气量、功能余气量、肺活量、时间肺活量、每分通气量、每分最大通气量和肺泡通气量来评价。3.肺容积是指肺能容纳的最大气体量,正常人的肺容积大约为3900-5200毫升。4.平静呼气末尽最大力量吸气,所能吸入肺内的气体量称为深吸气量。它是衡量最大通气能力的重要指标,当胸廓、胸膜、肺组织和呼吸肌等发生病变时,会降低最大通气潜力,使深吸气量减少。

5.平静呼气末,肺内所余留的气体量为功能余气量,正常人的功能余气量约为2500毫升,患有某些疾病时,此值会发生明显变化。

6.最大吸气后,尽力所能呼出的最大气体量称为肺活量。肺活量存在较大的个人差异,正常成人男性约为3500毫升,女性约为2500毫升。运动员可达到7000毫升。肺活量反映一次通气的最大能力,由于肺活量测定时无呼气的时间限制,所以不能充分反映肺通气功能,所以引出了时间肺活量。

7.时间肺活量是在一次尽力呼气之后,用力并以最快的速度呼气,计算第一、二、三秒末的呼出气量占肺活量的百分数。正常人第一、二、三秒的时间肺活量分别是83%、96%、99%,其中第一秒的时间肺活量意义最大。运动员较常人高,病人较低。

8.人体每分钟吸入或呼出的气体总量称为每分通气量,正常人约为6-8升,它会随着运动强度的增加而增大。它所能达到的最大通气量称为每分最大通气量。

9.一般人的每分最大通气量在120-140l/min,它与年龄、性别、运动项目和训练水平等有关,运动员约是一般人的2-2.5倍。

10.肺泡通气量是指人体每分钟吸入肺泡真正参与气体交换的新鲜空气量。从气体交换的角度考虑,只有进入肺泡能与血液进行交换的气体量才是有效通气量,因此用肺泡通气量来评价肺通气功能更有意义。

7.为什么在一定范围内深而慢的呼吸比浅而快的呼吸效果好?1.在呼吸过程中,每次吸入的气体中,留在呼吸道中的气体是不能进行气体交换的,这一部分叫做无效解剖腔,只有进入肺泡的气体才能与血液进行交换,肺泡通气量=(潮气量-无效腔)×呼吸频率。

2.在运动中,当呼吸频率过快时,气体主要往返于无效腔,而真正在肺泡的气量较少,因此从提高肺泡气体更新的角度考虑,增加呼吸深度是运动时呼吸调节的重点,采取适当的呼吸深度,既能节省呼吸肌的能量消耗,又能提高肺泡通气量和气体交换效率。

3.深而慢的呼吸比浅而快的呼吸可提高气体的交换效率,因为通气/血流的比值受肺泡通气量的影响,肺泡通气量提高,可使通气/血流比值更加接近最佳比值0.84。

8.试述气体交换过程及其影响因素?

1.在肺泡内氧分压高于静脉血氧分压,而二氧化碳分压则低于静脉血,因此,氧气向静脉血扩散,而二氧化碳则由静脉血向肺泡扩散,经肺换气后使静脉血变成了动脉血。当动脉血流经组织时,由于组织的氧分压低于动脉血氧分压,而二氧化碳分压高于动脉血,因此,氧气由血液向组织扩散,而二氧化碳则由