归纳一下C#线程同步的几种方法 联系客服

发布时间 : 星期一 文章归纳一下C#线程同步的几种方法更新完毕开始阅读16e0f100a6c30c2259019ef9

我们在编程的时候,有时会使用多线程来解决问题,比如你的程序需要在后台处理一大堆数据,但还要使用户界面处于可操作状态;或者你的程序需要访问一些外部资源如数据库或网络文件等。这些情况你都可以创建一个子线程去处理,然而,多线程不可避免地会带来一个问题,就是线程同步的问题。如果这个问题处理不好,我们就会得到一些非预期的结果。

在网上也看过一些关于线程同步的文章,其实线程同步有好几种方法,下面我就简单的做一下归纳。 一、volatile关键字

volatile是最简单的一种同步方法,当然简单是要付出代价的。它只能在变量一级做同步,volatile的含义就是告诉处理器, 不要将我放入工作内存, 请直接在主存操作我。(【转自www.bitsCN.com 】)因此,当多线程同时访问该变量时,都将直接操作主存,从本质上做到了变量共享。

能够被标识为volatile的必须是以下几种类型:(摘自MSDN)

? Any reference type.

? Any pointer type (in an unsafe context).

? The types sbyte, byte, short, ushort, int, uint, char, float, bool. ? An enum type with an enum base type of byte, sbyte, short, ushort,

int, or uint. 如:

Code public class A {

private volatile int _i; public int I {

get { return _i; } set { _i = value; } } }

但volatile并不能实现真正的同步,因为它的操作级别只停留在变量级别,而不是原子级别。如果是在单处理器系统中,是没有任何问题的,变量在主存中没有机会被其他人修改,因为只有一个处理器,这就叫作processor

Self-Consistency。但在多处理器系统中,可能就会有问题。 每个处理器都有自己的data cach,而且被更新的数据也不一定会立即写回到主存。所以可能会造成不同步,但这种情况很难发生,因为cach的读写速度相当快,flush的频率也相当高,只有在压力测试的时候才有可能发生,而且几率非常非常小。 二、lock关键字

lock是一种比较好用的简单的线程同步方式,它是通过为给定对象获取互斥锁来实现同步的。它可以保证当一个线程在关键代码段的时候,另一个线程不会进来,它只能等待,等到那个线程对象被释放,也就是说线程出了临界区。用法:

Code

public void Function() {

object lockThis = new object (); lock (lockThis) {

// Access thread-sensitive resources. } }

lock的参数必须是基于引用类型的对象,不要是基本类型像bool,int什么的,这样根本不能同步,原因是lock的参数要求是对象,如果传入int,势必要发生装箱操作,这样每次lock的都将是一个新的不同的对象。最好避免使用public类型或不受程序控制的对象实例,因为这样很可能导致死锁。特别是不要使用字符串作为lock的参数,因为字符串被CLR“暂留”,就是说整个应用程序中给定的字符串都只有一个实例,因此更容易造成死锁现象。建议使用不被“暂留”的私有或受保护成员作为参数。其实某些类已经提供了专门用于被锁的成员,比如Array类型提供SyncRoot,许多其它集合类型也都提供了SyncRoot。 所以,使用lock应该注意以下几点:

1、如果一个类的实例是public的,最好不要lock(this)。因为使用你的类的人也许不知道你用了lock,如果他new了一个实例,并且对这个实例上锁,就很容易造成死锁。

2、如果MyType是public的,不要lock(typeof(MyType)) 3、永远也不要lock一个字符串

三、System.Threading.Interlocked

对于整数数据类型的简单操作,可以用 Interlocked 类的成员来实现线程同步,存在于System.Threading命名空间。Interlocked类有以下方法:Increment , Decrement , Exchange 和CompareExchange 。使用Increment 和Decrement 可以保证对一个整数的加减为一个原子操作。Exchange 方法自动交换指定变量的值。CompareExchange 方法组合了两个操作:比较两个值以及根据比较的结果将第三个值存储在其中一个变量中。比较和交换操作也是按原子操作执行的。如:

Code int i = 0 ;

System.Threading.Interlocked.Increment( ref i); Console.WriteLine(i);

System.Threading.Interlocked.Decrement( ref i); Console.WriteLine(i);

System.Threading.Interlocked.Exchange( ref i, 100 ); Console.WriteLine(i);

System.Threading.Interlocked.CompareExchange( ref i, 10 , 100 );

Output:

四、Monitor

Monitor类提供了与lock类似的功能,不过与lock不同的是,它能更好的控制同步块,当调用了Monitor的Enter(Object o)方法时,会获取o的独占权,直到调用Exit(Object o)方法时,才会释放对o的独占权,可以多次调用

Enter(Object o)方法,只需要调用同样次数的Exit(Object o)方法即可,Monitor类同时提供了TryEnter(Object o,[int])的一个重载方法,该方法尝试获取o对象的独占权,当获取独占权失败时,将返回false。

但使用 lock 通常比直接使用 Monitor 更可取,一方面是因为 lock 更简洁,另一方面是因为 lock 确保了即使受保护的代码引发异常,也可以释放基础监视器。这是通过 finally 中调用Exit来实现的。事实上,lock 就是用 Monitor 类来实现的。下面两段代码是等效的:

Code lock (x) {

DoSomething(); } 等效于

object obj = ( object )x;

System.Threading.Monitor.Enter(obj); try {

DoSomething(); } finally {

System.Threading.Monitor.Exit(obj); }

关于用法,请参考下面的代码:

Code private static object m_monitorObject = new object (); [STAThread] static void Main( string [] args)