14应用同余问题 联系客服

发布时间 : 星期日 文章14应用同余问题更新完毕开始阅读180dbc3131126edb6f1a100d

应用同余问题

一、基础知识

同余这个概念最初是由伟大的德国数学家高斯发现的。同余的定义是这样的:

两个整数a,b,如果它们除以同一自然数m所得的余数想同,则称a,b对于模m同余。记作:a≡b(mod m)。读做:a同余于b模m。比如,12除以5,47除以5,它们有相同的余数2,这时我们就说,对于除数5,12和47同余,记做12≡47(mod 5)。 同余的性质比较多,主要有以下一些: 性质(1):对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。比如:32除以5余数是2,19除以5余数是4,两个余数的和是2+4=6。“32+19”除以5的余数就恰好等于它们的余数和6除以5的余数。也就是说,对于除数5,“32+19”与它们的余数和“2+4”同余,用符号表示就是:32≡2(mod 5),19≡4(mod 5),32+19≡2+4≡1(mod 5)

性质(2):对于同一个除数,两个数的乘积与它们余数的乘积同余。

性质(3):对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。 性质(4):对于同一个除数,如果两个整数同余,那么它们的乘方仍然同余。 应用同余性质几萼体的关键是要在正确理解的基础上灵活运用同余性质。把求一个较大的数除以某数的余数问题转化为求一个较小的数除以这个数的余数,使复杂的题变简单,使困难的题变容易。

二、典型例题

例题1:求1992×59除以7的余数。

应用同余性质(2)可将1992×59转化为求1992除以7和59除以7的余数的乘积,使计算简化。1992除以7余4,59除以7余3。根据同余性质,“4×3”除以7的余数与“1992×59”除以7的余数应该是相同的,通过求“4×3”除以7的余数就可知道1992×59除以7的余数了。

因为1992×59≡4×3≡5(mod 7) 所以1992×59除以7的余数是5。 举一反三1:

1、求4217×364除以6的余数。

2、求1339655×12除以13的余数。

3、求879×4376×5283除以11的余数。

例题2:已知2001年的国庆节是星期一,求2010年的国庆节是星期几?

一星期有7天,要求2010年的国庆节是星期几,就要求从2001年到2010年的国庆节的总

天数被7除的余数就行了。但在甲酸中,如果我们能充分利用同余性质,就可以不必算出这个总天数。

2001年国庆节到2010年国庆节之间共有2个闰年7个平年,即有“366×2+365×7”天。因为366×2≡2×2≡4(mod 7),365×7≡1×7≡0(mod 7),366×2+365×7≡2×2+1×7≡4+0≡4(mod 7)

答:2010年的国庆节是星期五。 举一反三2:

1、已知2002年元旦是星期二。求2008年元旦是星期几?

2、已知2002年的“七月一日”是星期一。求2015年的“十月一日”是星期几?

3、今天是星期四,再过365的15次方是星期几?

例题3:求2001的2003次方除以13的余数。

2001除以13余12,即2001≡12(mod 13)。根据同余性质(4),可知2001的2003次方≡12的2003次方(mod 13),但12的2003次方仍然是一个很大的值,要求它的余数比较困难。这时的关键就是要找出12的几次方对模13与1是同余的。经试验可知12的平方≡1(mod 13),而2003≡2×1001+1。所以(12的平方)的1001次方≡1的1001(mod 13),即12的2002次方≡1(mod 13),而12的2003次方≡12的2002次方×12。根据同余性质(2)可知12的2002次方×12≡1×12≡12(mod 13)

因为:2001的2003次方≡12的2003次方(mod 13) 12的平方≡1(mod 13),而2003≡2×1001+1

12的2003次方≡12的2002次方×12≡1×12≡12(mod 13) 所以2001的2003次方除以13的余数是12。 举一反三3:

1、求12的200次方除以13的余数。

2、求3的92次方除以21余几。

3、9个小朋友坐成一圈,要把35的7次方粒瓜子平均分给他们,最后剩下几粒?

例题4:

自然数16520,14903,14177除以m的余数相同,m最大是多少?

自然数16520,14903,14177除以m的余数相同,换句话说就是16520≡14903≡14177(mod m)。根据同余性质(3),这三个饿数同余,那么它们的差就能被m整除。要求m最大是多少,就是求它们差的最大公约数是多少?

因为16520—14903=1617=3×7的平方×11 16520—14177=2343=3×11×71

14903—14177=726=2×3×11的平方 M是这些差的公约数,m最大是3×11=33。 举一反三4:

1、若2836、4582、5164、6522四个整数都被同一个两位数相除,所得的余数相同。除数是多少?

2、一个整数除226、192、141都得到相同的余数,且余数不为0,这个整数是几?

3、当1991和1769除以某一个自然数m时,余数分别为2和1,那么m最小是多少?

例题5:某数用6除余3,用7除余5,用8除余1,这个数最小是几? 我们可从较大的除数开始尝试。首先考虑与1模8同余的数,9≡1(mod 8),但9除以7余数不是5,所以某数不是9。17≡1(mod 8),17除以7的余数也不是5。25≡1(mod 8),25除以7的余数也不是5。33≡1(mod 8),33除以7的余数正好是5,而且33除以6余数正好是3,所以这个数最小是33。上面的方法实际是一种列举法,也可以简化为下面的格式: 被8除余1的数有:9,17,25,33,41,49,57,65,73,81,89,??其中被7除余5的数有:33,89,??这些数中被6除余3的数最小是33。 举一反三5:

1、某数除以7余1,除以5余1,除以12余9。这个数最小是几?

2、某数除以7余6,除以5余1,除以11余3,求此数最小值。

3、在一个圆圈上有几十个孔(如图38-1),小明像玩跳棋那样从A孔出发沿逆时针方向每隔几个孔跳一步,希望一圈以后能跑回A孔,他先试着每隔2孔跳一步,也只能跳到B孔。最后他每隔6孔跳一步,正好跳回A孔。问:这个圆圈上共有多少个孔?

三、同余问题练习题

1.求2008除以7的余数.

解:同学们也许会问,同余、同余,怎么求一个数除以另一个数的余数呢,它们两个数相除余数只有一个,谈不上\相同\,你不要着急.因为只有你明白了这道题的来龙去脉,那么后面的题你也就会迎刃而解了. 可以先去掉7的倍数1400余608,再去掉560还余下48,再去掉42最后余下6.这个过程可简单地记成: 2008→608→48→6.从这几个数我们可以看出,它们除以7都余6. 答:2008除以7的余数是6.

因为2008、608、48、6除以7的余数相同,所以2008-608、608-48、2008-6、608-6这几个算式的结果能被7整除.由此不难得出这样十分有用的结论:如果若干的数被同一个数除余数相同,那么这若干个数两两之差(大减小)必能被这个数整除.

2.有一个大于1的整数,它除1000,2001,967得到相同的余数(不为0),那么这个整数是多少? 解:由上面的结论,所求整数应能整除967,1000,2001的两两之差,即 2001-1000=1001=7×11×13 1000-967=33=3×11 2001-967=1034=2×11×47 这个整数是这三个差的公约数11. 答:这个整数是11.

3. 数2001,2232除以整数n,得到相同的余数,而且这个余数是合数,求n. 解:根据余数相同,所求的数应能整除2001与2232的差,即 2232-2001=231=3×7×11

由此我们知道n可能是3或7或11,究竟哪个符全合条件呢,这我们得认真对待,千万不能手懒.只要试一试即可,得7和11、21、33、77都符合条件. 答:n是7或11或21或33或77.

4.用一个自然数去除715和903所得余数相同,且商相差4.求这个数.

解:根据两个数除以同一个数余数相同的特点,我们可以得到903 -715的差能被这个数整除,又因为所得的商相差4,也就是903 -715的差除以这个数应该得4,要求这个数,即可用(903-715)÷4=47,即所求的数为47.

答:这个数是47.

此类题可以归结为:甲乙两个数除以一个相同的数,余数相同,且商相差n(n>1),则这个相同的数为(甲-乙)÷n.

5.若2836,4582,5146,6522四个自然数被一个自然数相除,所得余数相同且为两位数,除数和余数的和为多少?

解:根据若干个自然数除以同一个自然数所得余数相同,那么它们两两的差定能被这个自然数整除.于是得:

4582-2836=1746 5164-4582=582 6522-5164=1358

因为(1746,582,1358)=194,所以除数是194的大于10的约数.符合条件的只有97和194.如果除数=194,5164÷194=26……120(此处可以用原题中四个自然数中的任意一个都可,为什么?)余数不是两位数,与题意不符.如果除数是97,经检验,余数都是23,除数+余数=97+23=120.