基于51单片机的太阳能热水器智能控制器的设计毕业设计论文 联系客服

发布时间 : 星期六 文章基于51单片机的太阳能热水器智能控制器的设计毕业设计论文更新完毕开始阅读1814a73bae1ffc4ffe4733687e21af45b307fe2c

关闭循环水阀门F2,打开冷水阀门F2,热水阀门F3处于可控状态。若T3>N,打开热水阀门F3并将保持一段时间,若T3N阀门F3继续保持打开状态,否则关闭F3。可见,次过程充分利用太阳光能转化为热能,方便快捷。 4. 水箱加热控制

此时,也许你会问如果没有日照或者日照较弱时,到了晚上我们是否还能洗上热水澡吗?答案是肯定的,不要忘了这款热水器还有一个从系统,这时它就要发挥作用了。热水箱温度为T1,将它和设定值N相比较,从而控制是否打开电加热,控制时段为下午,具体过程如下:

若T1

表一

时间(时) 温度比较 加热值(度) 15 T1<35

最终热水箱的温度加热到设定值N。由此可见,即使没有日照我们照样可以洗上热水澡了。

综上所述,太阳能供热控制系统不仅节约而且高度只能化,方便省事,不论日常家居,还是对宾馆、学校等都是最佳选择。

2.2太阳能热水器组成及原理

6 5

4

7 2 1 3

2-3 热水器装置简图

1-集热器 2-下降水管 3-循环水管

4-补给水箱 5-上升水管 6-自来水管 7-热水出水管 热水器主要由集热器、循环管道和水箱等组成,图中为典型的热水器装置图。图中集热器1按最佳倾角放置,下降水管2的一端与循环水箱3的下部相连,另一端与集热器1的下集管接通。上升水管5与循环水箱3上部相连,另一端与集热器1的上集管相接。补给水箱4供给循环水箱3所需的冷水。

当集热器吸收太阳辐射后,集热器内温度上升,水温也随之升高。水温升高后,水的比重减轻,便经上升水管进入循环水箱上部。而循环水箱下部的冷水比重较大,就由水箱下流到集热器下方,在集热器内受热后又上升。这样不断对流循环,水温逐渐提高,直到集热器吸收的热量与散失的热量相平衡时,水温不再升高。这种热水利用循环加热的原理,因此又称循环热水器。

集热器是一种利用温室效应,将太阳能辐射转换为热能的装置,该装置与一般热水交换器不一样,热交换器通常只是液体到液体,或是液体到气体的热交换过程,而平板行集热器时直接将太阳辐射传给液体或气体,是一个复杂的传热过程。平板型集热器结构形式很多,世界上已实用的集热器就有直管式、瓦楞式、扁管式、铝翼式等二十多种。

2.3 主要芯片的结构与特点

2.3.1.DS12887时钟芯片简介

随着2000 年的即将来临,“千年虫”问题成为困扰当今世界的一大难题。过去采用两位数表示年度的日历系统将要用四位数来表示,因此有关的计算机操作系统和应用软件都要作相应的修改。据此,美国达拉斯半导体公司(Dallas)最新推出DS12887的串行接口实时时钟芯片,采用CMOS 技术制成,具有内部晶振和时钟芯片备份锂电池,同时它与目前IBMAT计算机常用的时钟芯片MC146818B 和DS1287 管脚兼容,可直接替换。它所提供的世纪字节在位置32h,世纪寄存器32h到2000 年1月1日从19递增到20。采用DS12887 芯片设计的时钟电路不需任何外围电路和器件,并具有良好的微机接口。DS12887芯片具有微功耗,外围接口简单,精度高,工作稳定可靠等优点,可广泛用于各种需要较高精度的实时时钟系统。美国Dallas公司推出两款数字时钟芯片DS12887/DS12C887,两款时钟芯片都将在1999年12月31日23时59分59秒时顺利地跳到2000 年1月1日零时,并能实2000 年2月29 日的闰年提示,是时钟芯片DS1287 的增强型品种,结构上相当于MC146818B 的改进型。芯片都采用24引脚双列直插式封装,其引脚接口逻辑和内部操作方式与MC146818 基本一致,所不同的是DS12887/DS12C887 芯片的晶体振荡器、振荡电路、充电电路和可充电锂电池等一起封装在芯片的上方,组成一个加厚的集成电路模块,因此,DS12887/ DS12C887时钟芯片无需MC146818 的电源电位检测端( PS),电路通电时其充电电路便自动对可充电电池充电,充足一次电可供芯片时钟运行半年之久,正常工作时可保证时钟数据十年内不会丢失。此外,片内通用的RAM 为MC146818 的两倍以上。DS12887/DS12C887 内部有专门的接口电路,从而使得外

部电路的时序要求十分简单,使它与各种微处理器的接口大大简化。使用时无需外围电路元件,只要选择引脚MOT 电平,即可和不同计算机总线连接。 1.主要技术特点

DS12887/DS12C887 具有下列主要技术特点:

(1) 具有完备的时钟、闹钟及到2100年的日历功能,可选择12小时制或24小时制计时,有AM和PM、星期、夏令时间操作,闰年自动补偿等功能。

(2) 具有可编程选择的周期性中断方式和多频率输出的方波发生器功能。 (3) DS12887内部有14个时钟控制寄存器,包括10个时标寄存器,4个状态寄存器和114bit作掉电保护用的低功耗RAM。

(4) 由于该芯片具有多种周期中断速率时钟中断功能,因此可以满足各种不同的待机要求,最长可达24小时,使用非常方便。

(5) 时标可选择二进制或BCD码表示。

(6) 工作电压: + 4. 5~5. 5V、工作电流:7~15mA。 (7) 工作温度范围:0~70°C。 2.DS12887/ DS12C887 的内部结构

DS12887/DS12C887为24引脚芯片,内部结构如下图。

图2-4 DS18B20内部框图

其中:MOT:计算机总线选择端;SQW:方波输出,速率和是否输出由专用寄存器A、B的预置参数决定;AD0~AD7:地址/数据(双向)总线,由AS 的下降沿锁存8位地址;R/W:读/写数据;AS:地址锁存信号端;DS:数据读信号端;CS:选通信号端,低电平有效;IRQ:中断申请,由专用寄存器决定;RESET:复位端;NC:空引脚。

DS12887内部由振荡电路,分频电路,周期中断/方波选择电路,14字节时钟

和控制单元,114字节用户非易失RAM,十进制/二进制计加器,总线接口电路,电源开关写保护单元和内部锂电池等部分组成。DS12887管脚分配如图:

图2-5 管脚分配图

VCC:直流电源+ 5V 电压。当5V电压在正常范围内时,数据可读写;当VCC低于4.25V,读写被禁止,计时功能仍继续;当VCC下降到3V以下时,RAM和计时器供电被切换到内部锂电池。

MOT(模式选择):MOT 管脚接到VCC时,选择MOTOROLA时序,当接到GND 时,选择INTEL时序。

SQW(方波信号输出):SQW 管脚能从实时时钟内部15级分频器的13个抽头中选择一个作为输出信号,其输出频率可通过对寄存器A编程改变。AD0 —AD7(双向地址/ 数据复用线):总线接口,可与MOTOROLA微机系列和INTEL 微机系列接口。

AS (地址选通输入):用于实现信号分离,在AD/ ALE 的下降沿把地址锁入DS12887。

DS(数据选通或读输入):DS/ RD 管脚有两种操作模式,取决于MOT管脚的电平,当使用MOTORO2LA 时序时,DS是一正脉冲,出现在总线周期的后段,称为数据选通;在读周期,DS指示DS12887驱动双向总线的时刻; 在写周期,DS的后沿使DS12887锁存写数据。选择INTEL时序时,DS称作(RD),RD与典型存贮器的允许信号(OE) 的定义相同。 R/W(读/ 写输入) : R/ W 管脚也有两种操作模式。选MOTOROLA 时序时,R/W 是一电平信号,指示当前周期是读或写周期,DS为高电平时,R/ W高电平指示读周期,R/W 信号是一低电平信号,称为WR。在此模式下,R/ W管脚与通用RAM 的写允许信号(WE) 的含义相同。CS(片选输入):在访问DS12887 的总线周期内片选信号必须保持为低。IRQ(中断申请输入):低电平有效,可作微处理的中断输入。没有中断的条件满足时,IRQ处于高阻态。IRQ线是漏极开中输入,要求外接上接电阻。RESET(复位输出):当该脚保持低电平时间大于200ms,保证DS12887有效