腐蚀的定义 联系客服

发布时间 : 星期四 文章腐蚀的定义更新完毕开始阅读1cf1b0427f1922791788e883

腐蚀的定义:腐蚀是材料受环境介质的化学、电化学和物理作用产生的损坏或变质现象。 腐蚀的特点:自发性、普遍性、隐蔽性。 腐蚀的分类:(金属腐蚀和非金属腐蚀) 金属腐蚀分为:

(机理)化学腐蚀、电化学腐蚀。 (破坏特征)全面腐蚀、局部腐蚀。

(腐蚀环境)大气、土壤、电解质溶液、熔融盐、高温气体等腐蚀。

局部腐蚀:应力腐蚀、疲劳腐蚀、磨损腐蚀、小孔腐蚀、晶间腐蚀、缝隙腐蚀、电偶腐蚀等 电化学腐蚀的定义:金属与电解质溶液发生电化学作用而引起的破坏。 化学腐蚀:金属与非电解质直接发生化学作用而引起的破坏。

金属腐蚀:金属腐蚀是金属与周围环境之间相互作用,使金属由单质转变成化合物的过程。 腐蚀速度:在均匀的腐蚀情况下,常用重量指标和深度指标来表示腐蚀速度。 极化的概念:电池工作过程中由于电流流动而引起电极电位偏离初始值的现象,称为极化现

象,通阳极电流,阳极电位向正方向偏离称阳极极化;通阴极电流,阴极电位向负方向偏离称阴极极化。

产生极化的根本原因:阳极或阴极的电极反应与电子迁移(从阳极流出或流入阴极)速度存

在差异引起的。

标准氢电极:把电镀有海绵状铂黑(极细而分散的铂金粉)的铂金片插入氢离子活度1的溶液

(酸性溶液)中,不断地通入分压101325Pa(1atm)的纯氢气冲击,使铂黑吸附氢气至饱和,这是铂金片即为标准氢电极。

金属电化学腐蚀的热力学条件:

(1)阳极溶解反应自发进行的条件:EA>EeM (2)阴极去极化反应自发进行的条件:EK>E0k (3)电化学腐蚀持续进行的条件:Ee.M

宏观腐蚀电池:阴阳两级可以用肉眼或不大于10倍的放大镜分辨出来(异种金属偶接;浓

度差、温差)

微电池:阴阳两级无法凭肉眼分辨(金属或合金表面因电化学不均一而存在大量微小的阴极

和阳极)

金属表面电化学不均一性的主要原因:

化学成分不均一;组织结构不均一;物理状态不均一;表面膜不完整

电化学极化(活化极化):阴极反应速度慢于电子来速,电子堆积,阴极电位负移;阳极反应

速度慢于电子出速,双电层内电子减少,阳极电位正移。这样造成电位变化称为电化学极化。

浓差极化:去极剂或反应产物扩散速度慢于其与电子反应速度,在阴极造成电子堆积/电位

负移,或在阳极造成金属离子(阳极离子)浓度增高/电位正移。这种有浓度差异引起的极化称为浓差极化。

膜阻(电阻)极化:一定条件下,金属表面形成保护膜,阻滞阳极过程,电位正移,同时电

阻大大增加,这种保护膜引起的极化称为膜阻(电阻)极化。

钝化:金属表面从活性溶解状态变成了非常耐腐蚀的状态的突变现象。 金属钝化后的状态称钝态,处于钝态下的金属耐腐性质称为钝性,(根据钝化产生条件不同

分)化学钝化(也称自钝化)由金属与钝化剂的自然作用产生、电化学钝化(也称阳极钝化)由阳极极化产生。

成相膜理论(薄膜理论)

当金属阳极溶解时,可以在金属表面生成一层致密的、覆盖得很好的固体产物薄膜。这层产

物膜构成独立的固相膜层,把金属表面与介质隔离开来,阻碍阳极过程的进行,导致金属溶解速度大大降低,使金属转入钝态。 吸附理论

引起金属钝化并不一定要形成相膜,只要在金属表面生成氧或含氧粒子的吸附层就足够了。吸附层改变了金属/溶液界面的结构,并使阳极反应的活化能显著提高的缘故。即由于这些粒子的吸附,使金属表面的反应能力降低了,因而发生了钝化。

应力腐蚀破裂:金属结构在拉应力和特定腐蚀环境共同作用下引起的破裂。

应力腐蚀产生的条件:应力与腐蚀介质综合作用的结果,有敏感材料、特定环境、和拉应力三个基本条件(缺一不可)。应力必须是拉应力。 应力腐蚀破裂(SCC)过程的三个阶段:(SCC断裂速度约为0.01~3mm/h) I:腐蚀引起裂纹或蚀坑的阶段(潜伏期或诱导期) II:裂纹扩展阶段 III:破裂期

应力腐蚀裂纹形貌(形态):晶间型、穿晶型、混合型。

SCC机理的学说很多:电化学阳极溶解理论、氢脆理论、膜破裂理论、化学脆化-机械破裂两阶段理论、腐蚀产物楔入理论、应力吸附破裂理论。 电化学阳极溶解理论: 腐蚀沿“活性途径”,在阳极侵蚀处形成狭小的裂纹或蚀坑→裂纹内部与金属表面构成腐蚀电池→活性阴离子进入裂纹或蚀坑内部→浓缩的电解质溶液水解酸化→裂纹尖端的阳极快速溶解→裂纹不断扩展直至破裂。 应力腐蚀的防护:(消除环境、应力和冶金三个方面的一切有害因素) (1) 降低设计应力(使最大有效应力或应力强度降低到临界值以下)

(2) 合理设计与加工,减少局部应力集中(选用大的曲率半径、采用流线型设计、关键

部位适当增厚(或改变结构型式)、焊接接构采用对接等等)。

(3) 降低材料对SCC的敏感性(采用合理的热处理方法消除残余应力,或改善合金的组

织结构以降低对SCC的敏感性:采用退火处理消除内应力、通过时效处理,改善合金的微观结构,避免晶间偏析物的形成,提高SCC的敏感性)

(4) 其他方法(合理选材、去除介质中的有害成分、添加缓蚀剂、采用阴极保护) 腐蚀疲劳的概念:腐蚀介质和变动负荷联合作用而引起金属的断裂破坏。 腐蚀疲劳机理:腐蚀疲劳是一个力学-电化学过程

磨损腐蚀:腐蚀性流体与金属构件以较高速度做相对运动而引起的金属腐蚀损坏 磨损腐蚀有湍流腐蚀、空泡腐蚀、微振腐蚀等。(常见的为前两种) 磨损腐蚀防护:合理的结构设计、正确的选择材料、适当的涂层。

湍流腐蚀:流体速度达到湍流状态而导致加速金属腐蚀的一种腐蚀形式。 湍流腐蚀的机理(过程):高速流体击穿了紧贴金属表面的边界液膜,一方面加速了去极剂的供应和阴、阳极腐蚀产物的迁移,使阴、阳极的极化作用减小;另一方面高速湍流对金属表面产生了附加的剪切力。(磨损腐蚀过程金属仍以金属离子形式溶入溶液,而不是以粉末形式脱落)

空泡腐蚀(空蚀或气蚀):由于腐蚀介质与金属构件作高速相对运动时,气泡在金属表面反复形成和崩溃而引起金属破坏的一种特殊腐蚀形态。

空泡腐蚀机理:流速足够高时,液体的静压力将低于液体的蒸汽压,使液体蒸发在低压区形成气泡,高压区压过来的流体使气泡崩溃,产生的冲击波强烈的锤击金属表面,破坏表面膜,使膜下金属的晶粒产生龟裂和剥落。

氢(致)损伤:由氢引起的金属材料力学性能的破坏现象,在外界应力存在的情况下更容易

发生,会使材料变脆、鼓泡、开裂、结构变化形成氢化物。 氢损伤:包括氢腐蚀、氢鼓泡与氢致开裂和氢脆。

氢腐蚀:氢与金属由于化学作用引起的腐蚀,尤其是指高温(200摄氏度以上)高压下氢与钢材中的渗碳体发生作用而导致破裂现象,(钢材受高温高压的氢气作用,变脆甚至破裂的现象)是一个不可逆的化学过程。

氢腐蚀分为两个阶段:I:氢脆阶段(也称为氢腐蚀的孕育期);II:氢侵蚀阶段。 注意:

1氢在常温常压下不会使钢材遭受明显的腐蚀,只有当温度和压力达到一定数值后,才会发生氢腐蚀。

2在一定氢气压力下,渗碳体与氢发生反应有一最低温度,称为氢腐蚀起始温度。它是衡量钢材抗氢腐蚀的性能指标。

3渗碳体与氢反应生成甲烷是一个体积缩小的反应,存在一个产生氢腐蚀的最低氢分压,低于时,不管温度多高,氢腐蚀都不会发生。

氢腐蚀机理:氢与碳作用生成甲烷,导致材料脱碳直至失效。 氢脆:氢与金属由于物理作用引起的腐蚀,属于是可逆氢脆。对材料的韧性和塑性影响较大。 孔蚀又称点蚀,是一种局限在金属表面某些点处并向深入到金属内部的小孔状腐蚀形态。 孔蚀主要发生在具有钝化膜的金属表面。

局部点腐蚀其大小主要受材料和环境的影响。材料因素:材料的点蚀电位越高,说明耐点蚀能力越强。当金属表面存在均匀致密的钝化膜时,耐点蚀能力随钝化膜的厚度增加而增大,孔隙率高的钝化膜不利于抗点蚀。环境因素:介质类型与成分、介质浓度、介质PH值、介质流速、环境温度等。

孔蚀防护:降低材料的有害杂质的含量、加入适量的能提高抗孔蚀能力的合金元素、改善热处理温度、降低介质中活性阴离子浓度、结构设计时消除死区、防止溶液中有害物质浓缩、阴极保护。

缝隙腐蚀:当金属与金属或金属与非金属之间存在很小的缝隙时,缝内介质不易流动而形成滞留状态,促使缝隙内的金属加速腐蚀。

缝隙腐蚀的机理:由于缝隙内与缝隙外存在金属离子或氧的浓度差所引起的。 缝隙腐蚀的防止方法: (结构设计)在结构设计上避免形成缝隙和能造成表面沉积的几何构形、尽量避免积液和死

区、结构能够妥善排流,有利于沉积物及时清除(或采用固体填充,将缝隙填实)

(选材:)采用耐缝隙腐蚀的材料 (其他:)采用阴极保护

电偶腐蚀定义: 具有不同电极电位的两种或两种以上金属或合金(或同一金属的各个部位)在电解质溶液中相接触后,电位较低的金属腐蚀加速,而电位较高的金属腐蚀反而减慢(得到了保护)。这就是电偶腐蚀,亦称接触腐蚀或双金属腐蚀。 面积比:SK/SA(大阴极小阳极)↑,阳极金属的腐蚀速度↑

有效距离:阳极腐蚀主要集中在接合处附近,离接合处越远,则腐蚀电流越小,超过一定范围,电偶效应几乎为零。

防止电偶腐蚀的途径:选择相容性材料、合理的结构设计(尽量避免小阳极大阴极的结构、不同金属的部件彼此绝缘、插入第三种金属(或采用镀层过渡)、阳极部件易更换,或适当增厚)

焊接缺陷:焊瘤;咬边;飞溅;电弧熔坑 异种金属焊接:

在腐蚀环境中,由于存在电位差,构成电偶腐蚀。

选用比母材电位更高的金属做焊条

焊接残余应力:在焊接过程中,焊件体积变化受阻产生,高温区金属内部产生残余拉应力,低温区金属内部产生残余压应力,焊接应力仅是局部效应(降低焊接残余应力,防止应力腐蚀破裂)。

晶间腐蚀是金属材料在特定的腐蚀介质中沿着材料的晶粒边界(晶界)产生的一种局部选择性腐蚀。

晶间腐蚀并不一定都发生在焊接结构上,但焊缝晶间腐蚀却是最常见的腐蚀破坏形式之一。 1晶粒边界比晶粒本体腐蚀快得多,危害性大。晶间腐蚀在宏观上不易察觉,金属甚至保持光泽,但强度可完全消失。

2晶间腐蚀常常会转变为沿晶应力腐蚀开裂,成为应力腐蚀开裂的起源,因此,它是一种危害性很大的局部腐蚀。

3一般金属材料都有晶间腐蚀倾向,不锈钢,Al,Ni,Cu合金等易发生晶间腐蚀 晶间腐蚀机理 在腐蚀性介质中,晶间贫铬区相对于碳化物和固溶体其他部分,形成小阳极大阴极的微电池,发生晶间腐蚀。

晶间腐蚀的特点:表面观察不到、晶粒间结合强度丧失、区域较窄(热影响区熔合线附近) 贫Cr理论

在敏化温度,过饱和C化合物 Cr23C6 在晶界析出,其周围形成贫Cr 区,因Cr在晶界扩散比在晶粒扩散速快,使晶界Cr很快耗尽(阳极),与晶粒形成活化/ 钝化电偶电池,发生阳极选择性腐蚀,促使晶间腐蚀的发生。

防止晶间腐蚀的方法:固溶处理(1050-1150)、稳定化退火(850-900)、超低碳法、合金化法、焊缝形成双相组织。 高温合金的抗氧化性 合金化原理

利用合金化提高金属的抗氧化性途径: (1)减小氧化膜的晶格缺陷浓度

金属离子过剩型氧化膜:原子价较高的金属离子 金属离子不足型氧化膜:原子价较低的金属离子 (2)依靠选择氧化生成保护膜

合金元素的离子半径<基体金属离子半径 (3)生成稳定的新相(复合氧化物)

离子在AB2O4氧化膜中的扩散速度迟缓(移动所需活化能提高)

合金的抗氧化性:高温下迅速氧化,氧化后形成一层连续而致密的、牢固地附着在金属表面的薄膜,使金属具有不再被氧化或氧化速度很小的特性

提高钢的抗氧化性:采用合金化途径,加入Cr、Al、Si及其他微量元素,选择氧化或生成复合氧化物新相。 大气腐蚀与防锈:

空气的相对湿度对金属的大气腐蚀有重要的影响。 大气成分和湿度是决定大气腐蚀程度的两个主要因素。 大气腐蚀的特点:

1、 金属在大气自然条件下发生的腐蚀

2、 在金属表面上的薄层电解液膜中进行的电化学腐蚀

3、 金属表面的水膜成分,是大气中的杂质溶解在水膜中形成的相应的电解质溶液 4、 大气腐蚀过程遵循电化学腐蚀的一般规律