交流调速答案 - 图文 联系客服

发布时间 : 星期一 文章交流调速答案 - 图文更新完毕开始阅读211770b2b84ae45c3b358cdb

1.异步电动机从定子传入转子的电磁功率 Pm 中,有一部分是与转差成正比的转差功率 Ps ,根据对 Ps 处理方式的不同,可把交流调速系统分成哪几类?并举例说明。

答:从能量转换的角度上看,转差功率是否增大,是消耗掉还是得到回收,是评价调速系统效率高低的标志。从这点出发,可以把异步电机的调速系统分成三类 。 转差功率消耗型调速系统:这种类型的全部转差功率都转换成热能消耗在转子回路中, 降电压调速、转差离合器调速、转子串电阻调速属于这一类。在三类异步电机调速系统中, 这类系统的效率最低,而且越到低速时效率越低,它是以增加转差功率的消耗来换取转速的 降低的(恒转矩负载时)。可是这类系统结构简单,设备成本最低,所以还有一定的应用价值。

转差功率馈送型调速系统:在这类系统中,除转子铜损外,大部分转差功率在转子侧通 过变流装置馈出或馈入,转速越低,能馈送的功率越多,绕线电机串级调速或双馈电机调速 属于这一类。无论是馈出还是馈入的转差功率,扣除变流装置本身的损耗后,最终都转化成 有用的功率,因此这类系统的效率较高,但要增加一些设备。转差功率不变型调速系统:在这类系统中,转差功率只有转子铜损,而且无论转速高低,

转差功率基本不变,因此效率更高,变极对数调速、变压变频调速属于此类。其中变极对数 调速是有级的,应用场合有限。只有变压变频调速应用最广,可以构成高动态性能的交流调 速系统,取代直流调速;但在定子电路中须配备与电动机容量相当的变压变频器,相比之下, 设备成本最高。 2.转速闭环转差频率控制的变频调速系统能够仿照直流电动机双闭环系统进行控制,但其动静态性能却不能完全达到直流双闭环系统的水平,这是为什么?

答:它的静、动态性能还不能完全达到直流双闭环系统的水平,存在差距的的原因有以下几个方面:

(1)在分析转差频率控制规律时,是从异步电机稳态等效电路和稳态转矩公式出发的,所谓的“保持磁通 Φm恒定”的结论也只在稳态情况下才能成立。在动态中 Φm如何变化还没有深入研究,但肯定不会恒定,这不得不影响系统的实际动态性能。

(2)Us = f(ω1 , Is)函数关系中只抓住了定子电流的幅值,没有控制到电流的相位,而在动态中电流的相位也是影响转矩变化的因素。

(3)在频率控制环节中,取 ω1 = ωs + ω ,使频率得以与转速同步升降,这本是转差频率控制的优点。然而,如果转速检测信号不准确或存在干扰,也就会直接给频率造成误差,因为所有这些偏差和干扰都以正反馈的形式毫无衰减地传递到频率控制信号上来了。

3.对于恒转矩负载,为什么调压调速的调速范围不大?电机机械特性越软调速范围越大?

答:带恒转矩负载工作时,普通龙型异步电动机降压调速时的稳定工作范围为0

1

4.简述异步电动机在下面四种不同的电压-频率协调控制时的机械特性并进行比较: 1) 恒压恒频正弦波供电时异步电动机的机械特性; 2) 基频以下电压—频率协调控制时异步电动机的机械 3) 基频以上恒压变频控制时异步电动机的机械特性; 4) 恒流正弦波供电时异步电动机的机械特性;

答:恒压恒频正弦波供电时异步电动机的机械特性:当s很小时,转矩近似与S成正比,机械特性是一段直线,s接近于1时转矩近似与s成反比,这时,Te = f(s)是对称于原点的一段双曲线。 基频以下电压-频率协调控制时异步电动机的机械特性:恒压频比控制的变频机械特性基本上是平行下移,硬度也较好,当转矩增大到最大值以后,转速再降低,特性就折回来了。而且频率越低时最大转矩值越小,能够满足一般的调速要求,但低速带载能力有些差强人意,须对定子压降实行补偿。恒Eg /ω1 控制是通常对恒压频比控制实行电压补偿的标准,可以在稳态时达到Φrm = Constant,从而改善了低速性能,但机械特性还是非线性的,产生转矩的能力仍受到限制。恒 Er /ω1 控制可以得到和直流他励电机一样的线性机械特性,按照转子全磁通 Φrm 恒定进行控制,而且,在动态中也尽可能保持 Φrm 恒定是矢量控制系统的目标, 基频以上恒压变频控制时异步电动机的机械特性:当角频率提高时,同步转速随之提高,最大转矩减小,机械特性上移,而形状基本不变。基频以上变频调速属于弱磁恒功率调速。 恒流正弦波供电时异步电动机的机械特性:恒流机械特性的线性段比较平,而最大转矩处形状很尖。恒流机械特性的最大转矩值与频率无关,恒流变频时最大转矩不变,但改变定子电流时,最大转矩与电流的平方成正比。 5.转子磁链计算模型有电压模型和电流模型两种,分析两种模型的基本原理, 比较各自的优缺点。

答: 根据定子电流和定子电压的检测值来估算转子磁链,所得出的模型是电压模 型。采用电压模型法,由于存在电压积分问题,结果在低速运行时,模型运算困 难。 根据描述磁链与电流关系的磁链方程来计算转子磁链, 所得出的模型是电流 模型,采用电流模型法时,由于存在一阶滞后环节,在动态过程中难以保证控制 精度。 6.下图为异步电动机矢量控制原理结构图,A,B,C,D分别为坐标变换模块,请指出它们分别表示什么变换?(8分)这些变换的等效原则是什么(2分)?

? 给定信号 ~ i*A i*B B i*C iA 电流控制iB 变频器 iC i? C iβ ? im D 等效直流电动机模型 i*m i*t A i*? i*? ? + 控制器 ?1 反馈信号 异步电动机 it

?1VR解:A 矢量旋转逆变换 。B 二相静止坐标变成三相静止坐标变换 。C 三相静止坐标系变成二相静止坐

2

标变换。D 矢量旋转变换 VR,将二相静止坐标下的互相垂直的交流信号变换成二相旋转的互相垂直的直流信号。等效变换的原则是旋转磁场等效或磁动势等效

7.按定子磁链控制的直接转矩控制 (DTC) 系统与磁链闭环控制的矢量控制 (VC) 统 系 在控制方法上有什么异同?

答:1)转矩和磁链的控制采用双位式砰-砰控制器,并在 PWM 逆变器中直接用这两个控制信号产生电压的 SVPWM 波形, 从而避开了将定 子电流分解成转矩和磁链分量, 省去了旋转变 换和电流控制,简化了控制器的结构。 2) 选择定子磁链作为被控量, 而不象 VC 系统 中那样选择转子磁链, 这样一来, 计算磁 链的模型可以不受转子参数变化的影响,提高了控制系统的鲁棒性。如果从数学模型推导 按 定子磁链控制的规律,显然要比按转子磁链定向时复杂,但是,由于采用了砰-砰控 制,这 种复杂性对控制器并没有影响。 3)由于采 用了直接转矩控制,在加减速或负载变化的动态过程中,可以获得快速的 转 矩响应, 但必须注意限制过大的冲击电流, 以免损坏功率 开关器件, 因此实际的转矩响 应的 快速性也是有限的

8.

3

9.笼型异步电动机铭牌数据为:额定功率PN?3kW,额定电压UN?380V,额定电流IN?6.9A,额定转速

nN?1400r/min,额定频率fN?50Hz,定子绕组Y联接。由实验测得定子电阻Rs?1.85?,转子电阻H,转子自感Lr?0.2898Rr?2.658?,定子自感Ls?0.294H,定、转子互感Lm?0.2838H,转子参数已折

合到定子侧,系统的转动惯量J?0.1284kg?m2,电机稳定运行在额定工作状态,试求:转子磁链?r和按转子磁链定向的定子电流两个分量ism、ist。 解:由异步电动机稳态模型得额定转差率

sN?额定转差

n1?nN1500?14001?? n1150015100?rad/s 15?sN?sN?1?sN2?fN?电流矢量幅值

22is?ism?ist?3Im?3?6.9A 2由按转子磁链定向的动态模型得

Ldyr1=-yr+mismdtTrTrws=LmistTryr

稳定运行时,

dyr=0,故yr=Lmism, dt 4