由入门到精通 - PID自动调节纵横谈 联系客服

发布时间 : 星期日 文章由入门到精通 - PID自动调节纵横谈更新完毕开始阅读21ff5dd276a20029bd642d7b

2、 车轮转动,车轮将转动的角度传给指南机构

3、 齿轮传动

4、 机械制造

那么,所有这种原理的指南车存在如下问题:

1、 指南车在行进过程中,不可避免的存在地面摩擦与轮轴传动摩擦的矛盾。如果轮轴等一系列传动摩擦大于车轮与地面摩擦的时候,就可能发生车轮停止转动的情况。如果某一段地面较为光滑,就会发生指南车方向错误。

黄帝时期,即使算是青铜时代,克服传动摩擦的水平也不会很高,所以在黄帝时期,这种原理的指南车不会太可靠。何况中国传统上讲,轮毂轴承一般都采用木制,摩擦力很大。方向误差会更大。

而汉朝张衡以后,金属制造工艺发展,这种原理的指南车会较为可靠。

2、 马车带动指南车在野外快速行走的时候,会产生较大颠簸,一旦车轮一侧腾空,车轮旋转虽有惯性,但是还会使得该侧车轮变慢甚至停转。不管变慢还是停转,都会使得指向误差产生。

3、 当时行军打仗,人力已经无法辨别方向,即使有大雾产生也说明行军线路况较为复杂。而上述两个问题的发生几率不可忽视,而且会产生累加。作为行军的指向工具,行驶了数百公里后,最终指南车将变得不可靠,不能作为指向工具。千军万马的生命,甚至国家的命运,都寄托在这样一个不可靠的指向工具上面,有点近于儿戏的感觉。

综上所述,除非我们更换更可靠的思路,否则这种靠车轮带动、机械传动的指向工具在行军打仗中,基本不可信。

所以,我更倾向于至少黄帝时期的指南车不靠机械传动的思路。根据当时发展状况,有可能是车上装载磁铁指向。虽然说黄帝时期还没有被明确认为发明了指南针,但是偶然的发现被应用于实践的可能性是存在的。

而汉朝以后有了金属零件的的指南车,只是作为新奇的构想,或者皇帝仪仗的显摆工具,采用机械传动倒较为可信。 1-3 没有控制理论的世界

虽然说人——甚至连动物都是——从生下来就在掌握自动调节系统,并且在儿童时期就是一个自动调节系统的高手,可以应付很复杂的自动调节系统了,那么我们国家5000年的文明,就没有发展出一条自动调节理论么?

很遗憾地告诉您,没有。这个问题在本章的附文中,咱们会专门探讨。

自动调节系统的理论,是针对工业过程的控制理论。以前我们国家没有一个完整的工业结构,所以几乎不可能发展出一条自动调节理论的。即使是工业化很早了的欧美,真正完整的自动控制理论的确立,也是很晚时期的事情了。

咱先把理论的事情放到一边,先说说是谁先弄出一套真正的自动调节系统产品的吧。

咱大家都知道蒸汽机是瓦特发明的。可是实际上在此之前还有人在钻研蒸汽推动技术。不嫌累赘的话,咱罗列一下研究蒸汽推动的历史。没有兴趣的可以隔过不看。1606年,意大利人波尔塔(公元1538—1615年)在他撰写的《灵学三问》中,论述了如何利用蒸汽产生压力,使水槽中的液位升高。还阐述了如何利用水蒸汽的凝结产生吸力,使液位下降。在此之后,1615年,法国斯科,1629年,意大利布兰卡,1654年,德国发明家盖里克,1680年,荷兰物理学家惠更斯,法国物理学家帕潘,随后的英国军事工程师托玛斯·沙弗瑞都先后进行了研究。这些研究仅仅是初步探索阶段,还用不到自动调节。1712年英国人托玛斯·纽考门(公元1663~1729年)发明了可以连续工作的实用蒸汽机。可是为什么我们都说蒸汽机是瓦特发明的,不说是纽考门发明的呢?因为他的蒸汽机没有转速控制系统,转速不能控制的话,后果可想而知。纽考门的蒸汽机因为无法控制,最终不能应用。瓦特因为有了转速控制系统,蒸汽机转速可以稳定安全的被控制在合理范围内,瓦特的名字就被写到了教科书上。那么瓦特是怎么实现转速控制的呢?

上图就是瓦特的转速控制的模型。蒸汽机的输出轴通过几个传动部分,最终连接着两个小球,连接小球的棍子的另一端固定。蒸汽机转动的时候,传动部分带动两个小球旋转,小球因为离心力的原因张开,小球连杆带动装置控制放汽阀。如果转速过快,小球张开就大,放汽阀就开大,进汽减少,转速就降低。

可以看出,这是个正作用调节系统。虽然没有任何电子元器件,可是它确确实实就是一个自动调节系统。虽然咱没有资料表明它如何调节参数,可是咱可以想象影响调节参数的因素:小球的位置。小球越靠近连杆根部,抑制离心力的力量就越小,比例作用越大。

瓦特发明了蒸汽机,瓦特又发明了转速控制系统?我总是怀疑,这不应该是一个人的功劳。一个人的能力再大,也不可能搞了这个又搞那个。很可能是一批人共同的成果,或者说,瓦特发明了主要的蒸汽机,其它的东西都寄到瓦特的名下了。不过史书里没有说,咱就权且都当成瓦特一个人的发明吧。

从瓦特之后,工业革命的大门就打开了。我们记住了瓦特,一部分原因就是:他有了可靠的自动调节系统。否则,他的蒸汽机就没有办法控制,要么转速过低,要么转所过高造成危险事故。而瓦特之前的那些人的努力,一部分原因是因为他们没有自动调节系统,我们要找到他们,大约要到大型图书馆某个积满灰尘的角落里了。

瓦特之后的一段时间内,工业革命虽然发展迅速,自动调节系统也有了一个方法,可是他们没有一个清晰的理论作指导,自动控制始终不能上一个台阶。

我们搞自动的都知道,工业控制的对象千差万别,我们不能够都用瓦特的小球进行控制吧?这个理论指导直到二十世纪四十年代才诞生——科学的发展有时候也真够艰难的。

直到1868年,英国物理学家马克斯威尔(J.C.Maxwell)研究了小球控制系统,用微分方程作为工具,讨论了系统可能产生的不稳定现象。在他的论文“论调节器”中,指出稳定性取决于特征方程的根是否具有负的实部。并给出了系统的稳定性条件。Maxwell的工作开创了控制理论研究的先河。这是公认的第一篇研究自动控制的论文。(资料出自《自动控制理论的早期发展历史》。作者王庆林,中国科学院自动化研究所)

马克斯威尔先生深刻认识到工业控制对控制理论的需要。因而他不仅自己对控制系统进行研究,而且鼓励引导科学家们去更多关注自动理论的研究工作。估计马克斯威尔先生是孤独的,因为科学史上很久没有发现别人突破他的研究成果。后来,他担任了剑桥一个学会的评奖委员,这个奖每两年评一次。在他评奖的时候(1877年),发现了一个自动控制的人才。我估计这时候老先生应该额手相庆,大喊一声我道不孤了!这个人就是Routh,我们中国人叫他劳斯。

当时劳斯先生的论文主题是“运动的稳定性”。他解决了马克斯威尔的一个关于五次以上多项式对于判定系统稳定性的难题,最终劳斯获得了最佳论文。后来,人们把这个判断稳定性方法,叫做劳斯判据。

也许是当时的科学交流还不够发达,劳斯判据有些科学家竟然不知道。瑞典科学家胡尔维茨就不知道这个劳斯判据。1895年,胡尔维茨先生为瑞士一个电厂的汽轮机设计调速系统。这个胡尔位次也是个数学家,他研究问题的时候习惯于从数学角度考虑其可行性。结果他也跟劳斯一样,根据多项式的系数决定多项式的根是否具有负实部。而胡尔维茨这一次不是纯理论研究,而是要解决火电厂的实际问题的,最后,胡尔维茨获得了把控制理论应用到实际控制的第一人的桂冠。后来我们还把这个稳定性判据称为劳斯胡尔维茨判据。理论实践双丰收啊!我要是胡尔维茨,我也许该感谢当时不发达的通讯。

1892年,俄罗斯数学力学家A.M.Lyapunov发表了一篇博士论文,研究“运动稳定性的一般问题”——稳定性,直到现在,始终是自动调节工作者关心的问题。

通过科学家们的努力,人们基本上可以做到粗略地控制一个系统了。真要精细控制系统,人们还缺少一个重要的认识:信息的采纳。据说这个认识也来源于一个小小的传奇,跟牛顿看见苹果发现了万有引力差不多。 1-4 负反馈

一切事物的发展都有着清晰的脉络的,控制论也是这样。直到20世纪中叶,工业控制首先要解决的,就是怎么能够稳定的让系统进行控制工作。所以科学家们更多考虑的,是控制系统的稳定性。

20世纪30~40年代,人们开始发现控制信息的重要。比较传奇的故事,是讲述一个叫做哈罗德.布莱克(Harold Black)的人。布莱克当时才29岁,电子工程专业毕业六年来,在西部电子公司工程部工作。西部电子公司我们知道的人不多,可是提起贝尔实验室(Bell Labs)

来,可能许多人都知道。在1925年,贝尔实验室成立,这个工程部成为贝尔实验室的核心。当时他在研究电子管放大器的失真和不稳定问题。怎样控制放大器震荡,始终解决不好。1928年8月的一天,布莱克早上上班,可能是必须要坐轮渡。他坐在船上还在思索这个问题,突然灵感来临,想到了抑制反馈的办法,也许可以用牺牲一定的放大倍数来解决,具体的解决办法,就是用负反馈来抑制震荡。为了捕捉住这个灵感,布莱克抓住手边的一份报纸,写下了这个想法。为了记住这个具有天才想法的一刻,贝尔实验室保存了这个报纸,这个报纸的名字叫《纽约时报》。为了记住这个当时具有天才想法的一刻,我们也说一下那条河,叫做胡森河(Hudson),那条船叫做Lackawanna Ferry,太鸟嘴,就不翻译了。

现在我们都知道了,要想让一个放大器稳定,需要用到负反馈。布莱克和同事们后来向专利局提出了总共52页一百多项的专利申请,当时美国的专利局可能也有点官僚,也许是看这么多理论不好判断。专利局的人迟迟没有通过这个申请。布莱克先生望穿秋水不见通过,就继续研究负反馈放大器的电路。九年之后他们研制出了实用的负反馈放大器,专利终获批准。

负反馈放大器的方法有了,但是怎样预先界定系统震荡与不震荡,是比较麻烦的。1932年美国通信工程师H.奈奎斯特(HarryNyquist Nyquist)发现电子电路中负反馈放大器的稳定性条件,即著名的奈奎斯特稳定判据。1934年,乃奎斯特也加入了贝尔实验室。

至此,自动控制的准备工作差不多了,但是我们还要介绍一下让我们许多人都感到头疼,或者在实际应用过程中懒得运用的传递函数,我们每个学习自动控制的人在学校都要学习的。

早在1925年,英国电气工程师亥维赛就把拉普拉斯变换应用到求解电网络的问题上。后来拉普拉斯变换就被应用到调节系统上,得到了很好的效果。乃奎斯特以后,数学家哈瑞斯也开始研究负反馈放大器问题。1942年,他用我们目前已经熟悉的方框图、输入、输出的方法,把系统分为若干环节,并引入了传递函数的概念。

在自动控制的接力赛的中间环节,我们看到了电子电路也加入了进来。可是电子电路仅仅算是插班生。当时,对电子电路本身并没有考虑到要去影响自动调节系统。放大器理论与自动控制理论可是说是两条线。那么,是谁让这两条线相交了呢?

1-5 控制论

1945年,美国数学家维纳把乃奎斯特的反馈概念推广到一切工程控制中,1948年维纳发表奠基性著作《控制论》。这本书的副标题是“关于动物和机器中控制和通信的科学”。

在此之前西方没有控制论这个词。最早使用控制论这个词语是法国的物理和数学家安培先生(André-Marie Ampère)。1834年他曾经给关于国务管理的科学取了个名字:控制论(cybernetique)。他计划用多种学科的研究把国家的国务管理科学化。这种科学化管理政治乃至国家的企图在西方多有出现,比较成功的是对经济的操控和管理,最为著名的就是亚当斯密思的那只“看不见的手”。但是当初安培的计划过于庞大,当时乃至现在都没有能够实