由入门到精通——PID自动调节纵横谈 联系客服

发布时间 : 星期六 文章由入门到精通——PID自动调节纵横谈更新完毕开始阅读21ff5dd276a20029bd642d7b

商业管理中也广泛应用负反馈原理。最近老板们总是强调执行力。执行力怎么体现?收集反馈信息。老板们往往要求我们命令要有回复,回复就是反馈。如果老板们还要判断命令是否合理,那就需要用负反馈原理。

我们走路的时候,不能闭着眼睛,因为眼睛是反馈环节。即使视力出现故障,也要有导盲犬、探路棍、盲道等措施弥补,所有这些措施都是提供反馈环节。大脑收集到反馈以后,一定会进行负反馈处理。为什么是负反馈呢?走路的时候,眼睛看路,他会告诉你个信号:偏左了,偏右了,然后让你脑子进行修正。信号发到你脑子里面后,你脑子里要对反馈信号与目标信号相减,然后进行修正。偏左了就向右点,偏右了就向左点。对这个相减的信号就是负反馈。如果相加就是正反馈了,那样走着走着你就掉进坑里去了。

但是,保证你不掉进坑里,那仅仅是给你怎样走路给了一个大致的方向。具体每一步走多大,向左向右偏多少,还要进行具体计算。前面说的都是定性的问题,步子走多大,向左右偏多少是定量的问题。光定性不定量还是没办法控制的。后面还会介绍如何定量。

1-8 IEEE

IEEE是国际电工协会的简称。他致力于控制系统中理论和实践的探讨。我们之所以把IEEE作为自动控制历史的一部分,是因为他为自动控制的发展做出了很大贡献,并且在将来还会不断地做出贡献。如果说以前自动控制的科学家们基本上算是单兵作战的话,那么IEEE可以说是集群作战了。当然,集群作战的模式在贝尔实验室里已经产生了。

IEEE诞生于1954年。目前他有三个期刊:控制系统杂志 (Control Systems Magazine) , 自动控制学报 (Transactions on Automatic Control) 和控制系统技术学报 (Transactions on Control Systems Technology)。会议与会员的研究,基本上代表了自动控制的发展水平。

通过会员之间的交流,产生集群效应,学会有力的推动着自动调节技术的发展。

1-9 著作里程碑

任何学科发展史,都是由无数的科学家的名字和著作串联起来的。任何学科的发展史,也总有那么几个人物著作特别显眼明亮,我们称之为里程碑。

在漫长而又短暂的自动发展历史上,有无数科学家的辛勤努力,都值得我们景仰。其中,奠定了自动控制基础的三本著作最值得我们关注: 1、《信息论》,作者香浓(Claude Elwood Shannon)(国内普遍翻译为香农,我认为作为自动控制鼻祖之一人物,这个翻译不够浪漫,所以就擅自篡改为香浓哈)。1948年,香农在《贝

尔系统技术杂志》第27卷上发表了一篇论文:《通讯的数学理论》,1949年又发表《噪声中的通讯》。这两篇文章奠定了《信息论》的基础。

以前学习热力学,对热力学简直到了膜拜的地步。正好当时流行一个理论:由热力学看宇宙的哲学。也喜欢得不得了,以为熵可以推广到一切。后来发现问题了。对熵概念就冷淡了。

再后来发现,熵的关于哲学的推广虽然有问题,可是上的应用也非常广泛。计算机信息处理有熵,股票的书籍里有熵,香浓的信息论也有熵,叫做信息熵。熵的概念最初是度量热力学中热量的传播的,信息熵适度两一个信息源能够提供多少新的信息的。信息熵是香浓弄出的概念。 2、《控制论》,作者维纳。前面介绍过了,这里忽略。

3、PID控制法的创立。虽然说现在诞生了行行色色的先进控制方法,许多可以代替PID控制法,可是到目前为止,没有任何一种新的控制法有PID应用这么广泛。并且,新兴的先进控制法中,有许多也融合进了PID的控制原理,或者干脆叠加上PID控制法。

另外一个可资借鉴的一个老外收集的PID控制器大事记(年表)作者:Vance J.VanDoren。

1788年:James Watt为其蒸汽机配备飞球调速器,第一种具有比例控制能力的机械反馈装置。

1933年:Tayor公司(现已并入ABB公司)推出56R Fulscope型控制器,第一种具有全可调比例控制能力的气动式调节器。

1934-1935年:Foxboro 公司推出40型气动式调节器,第一种比例积分式控制器。

1940年:Tayor公司推出Fulscope 100,第一种拥有装在一个单元中的全PID控制能力的气动式控制器。

1942年:Tayor 公司的 John G. Ziegler 和 Nathaniel B. Nichols 公布著名的Ziegler-Nichols 整定准则。

第二次世界大战期间,气动式 PID 控制器用于稳定火控伺服系统,以及用于合成橡胶、高辛烷航空燃料及第一颗原子弹所使用的U-235 等材料的生产控制。

1951年:Swartwout公司(现已并入Prime Measurement Products公司)推出其Autronic产品系列,第一种基于真空管技术的电子控制器。

1959年:Bailey Meter公司(现已并入ABB公司)推出首个全固态电子控制器。

1964年:Tayor公司展示第一个单回路数字式控制器,但未进行大批量销售。

1969年:Honeywell公司推出Vutronik过程控制器产品系列,这种产品具有从负过程变量而不是直接从误差上来计算的微分作用。

1975年:Process Systems公司(现已并入MICON Systems公司)推出P-200型控制器,第一种基于微处理器的PID控制器。

1976年:Rochester Instrument systems公司(现已并入AMETEK Power Instruments)推出Media控制器,第一种封装型数字式PI及PID控制器产品。

1980年至今年:各种其他控制器技术开始从大学及研究机构走向工业界,用于在更为困难的控制回路中使用。这其中包括人工智能、自适应控制以及模型预测控制等。

原文:《PID: 控制领域的常青树》。

链接:http://www.gkong.com/gk_media/at_content.asp?id=2 1-10 调节器

控制理论这个大厦基本上建立起来了。其实我更关心的是PID控制方法的建立。说老实话,我总觉得维纳虽然伟大,可是总觉得他的理论不那么“精巧”,说白了谁都能明白。相比之下,我对PID理论的发明人更加佩服。说起来非常简单,不就是比例积分微分运算么,可具体要提出这种方法,还是需要一定的天才的。

PID是什么?

要弄清楚怎样定量之前,我们先要理解一个最基本的概念:调节器。调节器是干什么的?调节器就是人的大脑,就是一个调节系统的核心。任何一个控制系统,只要具备了带有PID的大脑或者说是控制方法,那它就是自动调节系统。如果没有带PID的控制方法呢?那可不一定不是自动调节系统,因为后来又涌现各种控制思想。比如时下研究风头最劲的模糊控制,以前还有神经元控制等等;后来又产生了具有自组织能力的调节系统,说白了也就是自动整定参数的能力;还有把模糊控制,或者神经元控制与PID结合在一起应用的综合控制等等。在后面咱们还会有介绍。咱们这个文章,只要不加以特殊说明,都是指的是传统的PID控制。可以这样说:凡是具备控制思想和调节方法的系统都叫自动调节系统。而放置最核心的调节方法的东西叫做调节器。

基本的调节器具有两个输入量:被调量和设定值。被调量就是反映被调节对象的实际波动的量值。比如水位温度压力等等;设定值顾名思义,是人们设定的值,也就是人们期望被调量需要达到的值。被调量肯定是经常变化的。而设定值可以是固定的,也可以是经常变化的,比如电厂的AGC系统,机组负荷的设定值就是个经常变化的量。

基本的调节器至少有一个模拟量输出。大脑根据情况运算之后要发布命令了,它发布一个精确的命令让执行机构去按照它的要求动作。在大脑和执行机构(手)之间还会有其他的环节,比如限幅、伺服放大器等等。有的限幅功能做在大脑里,有的伺服放大器做在执行机构里。

上面说的输入输出三个量是调节器最重要的量,其它还有许多辅助量。比如为了实现手自动切换,需要自动指令;为了安全,需要偏差报警等等。这些可以暂不考虑。为了思考的方便,咱们只要记住这三个量:设定值、被调量、输出指令。

事实上,为了描述方便,大家习惯上更精简为两个量:输入偏差和输出指令。输入偏差是被调量和设定值之间的差值,这就不用罗嗦了吧?

1-11 再说PID

回到刚才的提问:什么是PID?

P就是比例,就是输入偏差乘以一个系数;

I就是积分,就是对输入偏差进行积分运算;

D就是微分,对输入偏差进行微分运算。

就这么简单。很多年后,我还始终认为:这个理论真美!

其实这个方法已经被广大系统维护者所采用,浅白一点说,就是先把系统调为纯比例作用,然后增强比例作用让系统震荡,记录下比例作用和震荡周期,然后这个比例作用乘以0.6,积分作用适当延长。虽然本文的初衷是力图避免繁琐的计算公式,而用门外汉都能看懂的语言来叙述工程问题,可是对于最基本的公式还要涉及以下的,况且这个公式也很简单,感兴趣的看一下,不感兴趣的可以不看哈。公式表达如下:

Kp = 0.6*Km

Kd = Kp*π/4*ω

Ki = Kp*ω/π

Kp为比例控制参数

Kd为微分控制参数