改性壳聚糖处理重金属废水的研究现状 联系客服

发布时间 : 星期六 文章改性壳聚糖处理重金属废水的研究现状更新完毕开始阅读23505c7e6bec0975f465e2fb

改性壳聚糖处理重金属废水的研究现状

壳聚糖[聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖]最早由法国人Rouget于1859年制得,是目前发现的唯一一种天然碱性多糖,被广泛应用于食品、医药等诸多行业中。1977年日本首先将壳聚糖用于废水处理,随后壳聚糖及其衍生物在水处理工程中的应用日益引起人们的重视,被认为是“绿色的水处理剂”。因壳聚糖及其改性物分子中含有大量的羟基和氨基,对金属离子具有很强的螯合作用,可以用于回收重金属和处理含重金属离子的工业废水。近年,壳聚糖及其改性物处理电镀废水逐渐引起一些学者的注意,并在一些电镀生产废水处理中得到应用。但是壳聚糖虽然本身具有吸附性能,但可溶于稀的盐酸、硝酸等无机酸和大多数有机酸,存在pH适应范围窄、对低浓度金属离子吸附性差、吸附选择性差、吸附平衡时间较长的缺点。因此在使用壳聚糖对电镀废水进行处理时,一般都对壳聚糖进行改性,提高壳聚糖的吸附性能。壳聚糖的改性方法分为物理改性方法和化学改性方法。物理改性方法一般是将壳聚糖及其衍生物制成微粒结构或者与其他多孔无机物混合,通过提高吸附材料的比表面积的方法提高其吸附性能。化学改性方法是指采用交联、接枝反应对壳聚糖进行改性。

1·改性壳聚糖在重金属废水处理中的应用 1.1化学改性

1.1.1交联改性壳聚糖处理重金属废水

交联改性使直链的壳聚糖分子形成网状结构,可有效提高壳聚糖

的稳定性。另外交联改性可以提高壳聚糖的吸附选择性。但是由于交联改性使壳聚糖分子中的氨基数量减少,将可能降低壳聚糖的吸附容量。受重金属离子性质及交联剂的影响,交联壳聚糖对重金属的吸附能力不一定高于壳聚糖,因此要实现较好的吸附效果需要选择合适的交联剂。常用交联剂有环氧氯丙烷、戊二醛、乙二醛和甲醛等;交联方法有直接法和模板法。

近年来模板合成法成为制备具有一定“记忆”功能高分子吸附螯合树脂的一种新方法,因其分子内保留有恰好能容纳模板离子的“空穴”,从而对模板离子有较强的识别能力(即“记忆”能力)。黄晓佳等发现以锌离子为模板合成戊二醛交联壳聚糖树脂不仅对Zn2+[ρ(Zn2+)为1g/L]具有较强的“记忆”能力,且对相同质量浓度的Cd2+、Hg2+也有较高吸附量,并且在酸性下条件再生不会发生软化和溶解,具有良好的再生性能。孙胜玲等研究了以铜盐[CuSO4·5H2O、Cu(Ac)2·H2O、Cu(NO3)2·6H2O、CuCl2·2H2O]为模板合成的戊二醛交联树脂对金属离子的吸附性能,结果发现各铜盐模板交联CTS(壳聚糖)对Cu2+、Co2+、Ni2+和Zn2+硫酸盐的吸附量均按Co2+<Ni2+<Zn2+<Cu2+顺序变化(实验用金属离子浓度均为0.021mol/L),但吸附量会因所用铜盐不同而有所不同,以硫酸铜为模板的壳聚糖较其它盐的模板有更高的吸附量和选择性。

石光等研究了交联壳聚糖微球(AECTS)Cu2+、Ni2+、Co2+的静态吸附性能,结果表明,AECTS对Cu2+、Ni2+、Co2+的吸附量分别为2.42、1.37和0.39mmol/g。发现对金属离子起吸附作用的主要是氨基、

羟基的配位作用,且配位强度正比于吸附量;金属离子的吸附在非晶区和晶区均有发生,对晶区的破坏程度正比于吸附量。交联、金属吸附使CTS3个降解阶段的温度不同程度地向低温移动,移动幅度与金属吸附量存在一定的对应关系。石光等研究了以Cu2+为模板的壳聚糖交联多孔微球(Cu-CSCPM)对溶液中Cu2+的吸附性能。实验发现Cu2+印迹和甲醛预交联可有效的保护壳聚糖交联多孔微球分子上的活性-NH2在环氧氯丙烷交联时的损失,从而提高微球对Cu2+的饱和吸附容量。对初始浓度为60mmol/L、吸附温度40℃、pH=4.0时,Cu-CSCPM对Cu2+的饱和吸附容量为1.89mmol/g,可有效吸附废水中的Cu2+。

韩德艳等研究了交联壳聚糖磁性微球,该磁性微球对Pb2+和Cu2+的吸附量分别为72.0mg/g和48.3mg/g,磁性微球具有不易流失,易再生的特点。李继平等用高脱乙酰度的壳聚糖包埋自制的磁流体,并用戊二醛交联制成对稀土离子(La3+,Nd3+,Eu3+,Lu3+)具有良好吸附效果的磁性壳聚糖(MCG),最高吸附率可达99%以上,并具有良好的重复使用性;其吸附行为满足Langmuir等温式。

周利民等也深入研究了磁性壳聚糖微球及其改性物对重金属的吸附。利用反相悬浮分散法和聚乙二胺改性制备的Fe3O4/壳聚糖磁性微球(PEMCS),当氨基含量6.47mmol/g、pH<3时可选择性分离Hg2+和UO22+(铀酰离子),对Hg2+以离子交换机理吸附。对Hg2+与UO22+的饱和吸附容量分别为2.19和1.38mmol/g。UO22+和Hg2+可用1mol/LH2SO4脱附,UO22+还可用2mol/LHCl脱附,脱附率>90%。同

时研究了乙二胺改性壳聚糖磁性微球(EMCS)对水溶液中Hg2+和UO22+的吸附性能。吸附容量随pH升高而增加;其吸附等温线用Langmuir方程拟合,饱和吸附容量分别为2.27和1.90mmol/g,高于磁性壳聚糖微球MCS和壳聚糖微球CS;其吸附动力学可用Lagergren方程拟合,对Hg2+和UO22+的吸附速率常数分别为0.036和0.026/min;EMCS可用1mol/LH2SO4再生,脱附率大于90%,有良好的重复使用性。同时该研究组对硫脲改性的壳聚糖基磁性微球(TMCS)对Au3+和Ag+的吸附平衡、动力学、吸附热力学、穿透曲线进行了研究。

WanNgah等以不同的交联剂戊二醛(GLA)、环氧氯丙烷(ECH)和乙烯基乙二醇二环氧甘油醚(EGDE)使壳聚糖交联,讨论了pH、搅拌速度和Cu2+离子浓度对吸附的影响。发现pH为6时最有利于Cu2+离子的吸附,其吸附等温线符合Langmuir方程。壳聚糖、壳聚糖-GLA、壳聚糖-ECH、壳聚糖-EGDE对Cu2+离子的饱和吸附量分别为80.71、59.67、62.47和45.94mg/g,吸附后用EDTA处理,Cu2+可被很快地从交联壳聚糖上洗脱下来,交联壳聚糖可再被用于重金属离子的吸附。YoshiakiShimizu等研究了EDTA交联壳聚糖对金属离子的吸附性能。结果表明,pH为6时,交联壳聚糖对Cu2+有选择性吸附,吸附能力随溶液pH的下降而显著降低;EDTA残余量的增加能加强交联壳聚糖对金属离子,尤其是Ca2+的吸附。尽管价格比市售螯合树脂高,但其吸附金属离子的性能优于螯合树脂,且对金属离子的解吸pH范围广,为4~6。