概率论基础(第三版)-李贤平-试题+答案-期末复习 联系客服

发布时间 : 星期六 文章概率论基础(第三版)-李贤平-试题+答案-期末复习更新完毕开始阅读2936e73082c4bb4cf7ec4afe04a1b0717fd5b3cd

14.解:(1)根据 pX(xi)?布分别为 X

pX(xi)

?j与 pY(yj)??p(xiyj) 得X与Y的边缘分p(xi,yj )i 0 1 Y 0 1 3 85 8pY(yj) 3 85 8故 EX?EY?,5315DY???

8864EXY???xiyjP(xi,yj)DX?ij58

1111?0?0??0??1??1?0??1?1?48821557故 cov(X,Y)?EX?YEX?EY???

28864cov(X,Y)?DXDY7764?

151515?6464

12 R(X,Y)?15.解:由于 XN(1,32),Y21N(0,42),R(X,Y)?? 故有

22 EX?1,DX?3,EY?0,DY?4

R(X,Y)?

cov(X,Y)cov(X,Y)?DXDY3242

cov(X,Y)1???,cov(X,Y)??6122 从而

EZ?E(DZ?D(

XY11111?)?EX?EY??1??0? 3232323XYXYXY?)?D()?D()?2cov(,)3232321111?DX?DY?2???cov(X,Y) 94321111??32??42?2???(?6)?3943216.解:由题设,有

X21E(?1)?EX2?1?2,EX2?622

XX11D(?1)?D()?DX?,DX?22242 从而

??DX?EX2?(EX)2?6?(EX)2?2(EX)?4,EX?22

17.解:由

???f(x)dx?1 得

11a?b?1 ?021 又由题设条件 DX? 得

18111EX??x(ax?b)dx?a?b03211122 EX??x(ax?b)dx?a?b

043

(ax?b)dx?

1111DX?EX2?(EX)2?(a?b)?(a?b)24332

111111?a?b?a2?ab?b2?4393418 由上解得:a?2,b?0 从而 EX?112?2??0? 323218.解:由于X~N(?,?)且EX = 3,DX = 1,故

??EX?3,?2?DX?1,??1X~N(3,1)

P{?1?X?1}?F(1)?F(?1)1?3?1?3??()??()11 ??(?2)??(?4)?[1??(2)]?[1??(4)]??(4)??(2)?0.999968?0.9772?0.02276819.解:由于X~B(n,p),故

??EX?np?2.4

?DX?np(1?p)?1.44~B(6, 0

从而 n?6,p?0.4,X

P{X?1}?P{X?0}?P{X?1}01?C6?0.40?0.66?C6?0.41?0.65?0.02332820.解:(1)根据数学期望的性质,有

E(X?Y)?EX?EY?2?3??1

(2) 根据方差与协方差及相关系数的性质,有

DX?EX?(2222E)X?20?2?1 6 DY?EY?(EY)?34?3?25 R(X,Y)?22cov(X,Y)cov(X,Y)??0.5

DXDY1625cov(X,Y)?10 D(X?Y)?DX?DY?2cov(X,Y)

?16?25?2?10?21

五、证明题:

1.证:由题设 ,有

D(X?Y)?E[(X?Y)?E(X?Y)]2?E[(X?EX)?(Y?EY)]2

?E[(X?EX)2?(Y?EY)2?2(X?EX)(Y?EY)]?E(X?EX)2?E(Y?EY)2?2E[(X?EX)(Y?EY)]?DX?DY?2Cov(X,Y)

2.证:由题设 ,有 EX?E[*X?EX]?DX1?E[X?EX]?0 DXDX*?EX*?(EX*)2?EX*

22X?EX2(X?EX)2?E[]?E[]

DXDX11?E(X?EX)2??DX?1DXDX第四章、正态分布

一、选择题:

221.设X与Y 相互独立,且X~N(?1,?1),Y~N(?2,?2),则Z = X +Y仍服从正态分

布,且有 ( )

2222A.Z~N(?1?2,?1??2) B.Z~N(?1??2,?1??2) 2222C.Z~N(?1??2,?1?2) D.Z~N(?1?2,?1?2)

2.若X与Y均相互独立且服从标准正态分布,则Z = X + Y

( )

A.服从N(0,2) B.服从N(0,1) C.服从N(0,2) D.不一定服从正态分布

3.若X与Y独立,且X ~ N(0,1),Y ~ N(1,1),则 ( )

11 B.P{X?Y?1}? 2211C.P{X?Y?0}? D.P{X?Y?1}?

22A.P{X?Y?0}?4.若随机变量X的数学期望与方差分别为EX =1,DX = 0.1,根据切比雪夫不等式,一

定有 ( ) A.P{?1?X?1}?0.9 B.P{0?x?2}?0.9 C.P{?1?X?1}?0.9 D.P{0?x?2}?0.9 5.设X1,X2,X9相互独立, EXi?1,DXi?1(i?1,2,9),根据切比雪夫不等式,

???1有 ( )

19A.P{?xi?1??}?1?? B.P{?xi?1??}?1???2

9i?1i?1?29C.P{?x?9??}?1??ii?19?2 D.P{?x?9??}?1?9?ii?19?2