参考答案 模拟电子技术实验指导书(2012) 联系客服

发布时间 : 星期二 文章参考答案 模拟电子技术实验指导书(2012)更新完毕开始阅读2ff6100b02020740be1e9bdb

实验一 常用电子仪器的使用

一、 实验目的

1.熟悉示波器,低频信号发生器和晶体管毫伏表等常用电子仪器面板,控制旋钮的名称,功能及使

用方法。

2.学习使用低频信号发生器和频率计。

3.初步掌握用示波器观察波形和测量波形参数的方法。

二、实验原理

在电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对电子电路的静态和动态工作情况的测试。

实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1—1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1—1 模拟电子电路中常用电子仪器布局图

1. 低频信号发生器

低频信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20V(峰-峰值)。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。低频信号发生器的输出信号频率可以通过频率分档开关进行调节。

低频信号发生器作为信号源,它的输出端不允许短路。 2.交流毫伏表

交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。

3.示波器

示波器是一种用途极为广泛的电子测量仪器,它能把电信号转换成可在荧光屏幕上直接观察的图象。示波器的种类很多,通常可分通用、多踪多线、记忆存贮、逻辑专用等类。

双踪示波器可同时观测两个电信号,需要对两个信号的波形同时进行观察或比较时,选用双踪示波器比较合适。

本实验要测量正弦波和方波脉冲电压的波形参数,正弦信号的波形参数是幅值Um、周期T(或频率f)和初相;脉冲信号的波形参数是幅值Um、周期T和脉宽TP。幅值Um、峰峰值UP-P和有效值都可表示正弦量的大小,但用示波器测UP-P较方便(用万用表交流电压档测得的是正弦量的有效值U=

Um21)。由于频率f=

T,

所以测出周期T,即可算得频率。矩形脉冲电压,可用周期T,脉宽TP和幅值Um三个参数来描述。TP与T之比称为占空比。

三、 实验内容和步骤

1

1.检查示波器 1) 扫描基线调节

接通交流电源(220V),开启示波器电源,输入耦合方式开关拨到接地端(GND端),进行光迹调节,协调地调节示波器面板上的“辉度”、“聚焦”、“X轴位移”、“Y轴位移”等旋钮,使屏幕的中心部分显示一条亮度适中、清晰的扫描线。

2)校准“校正信号”波形的幅度、频率 将示波器上的方波“标准信号”(UP-P=2V, f=1000Hz)分别接到CH1或CH2端,调节垂直轴方向微调旋钮(V/div的中心旋钮),使观测到的波形幅度读数为2V。(一般情况V/div的中心旋钮右旋到头即为校准状态)。然后调节扫描微调旋钮(在扫描开关旋钮的右侧),使观测到的T=1ms(一般情况扫描微调旋钮右旋到头即为校准状态,根据f=1000Hz,得T=1ms)。调节后,微调旋钮位置为标准“校准”位置,实验过程中不能再调节,否则波形读数不准。

2.正弦波信号的观察

1)频率的测定

通过电缆线,将信号发生器的正弦波输出口与示波器的CH1插口相连,调节信号源的频率旋钮,使输出频率分别为100Hz,1KHz和20KHz;电压幅值为1V,从荧光屏上读得波形周期,记入表1-1中。

表1-1

频率读数 项目测定 示波器“t/div”位置 一个周期占有的格数 信号周期 计算所得频率(Hz) 正 弦 波 信 号 频 率 的 测 定 100Hz 1000Hz 20000Hz 5ms/div 0.2ms/div 20us/div 2div 5div 2.5div 10ms 1ms 50us 100 1000 20000

(2)幅值的测定

调节信号输出幅值分别为有效值1V、2V、2.5V(由交流毫伏表读得),频率周期为1KHz,从荧光屏上读得波形幅值,记入表1-2中。

表1-2

交流毫伏表读数 正 弦 波 信 号 幅 值 的 测 定 项目测定 1V 2V 2.5V 示波器“V/div”位置 0.5V/DIV 1V/DIV 1V/DIV 峰—峰值波形格数(格) 5.6DIV 5.6DIV 7DIV 峰 值(V) 1.4V 2.8V 3.5V 计算所得的有效值(V) 1V 2V 2.5V 四、实验注意事项 1.示波器的辉度不要过亮。

2.调节仪器旋钮时,动作不要过猛。

3.调节示波器时,要注意触发开关和电平调节旋钮的配合使用,以使显示的波形稳定。 4.作定量测定时,“t/div”和“V/div”的微调旋钮应旋置“校准”位置。

2

实验二 晶体管单管共射放大器

一、实验目的

1.学习单管放大器静态工作点的调试和测量方法,了解静态工作点对输出电压波形的影响。 2.掌握放大器的电压放大倍数、输入电阻、输出电阻的测试方法,了解负载电阻对电压放大倍数的影响。

3.熟悉常用电子仪器的使用。 二、实验原理 对放大器的基本要求是:有足够的电压放大倍数;输出电压波形失真要小。放大器工作时,晶体管应工作在放大区,如果静态工作点选择不当,或输入信号过大,都会使输出电压波形产生非线性失真。

实验电路如图2-1。

图2-1 共射极单管放大器实验电路

1、电压放大倍数 Av=U 2、输入电阻 Ri?iU0UiUs?UiRs

3、输出电阻 R0?(三、预习要求

U0UL?1)RL

1.熟悉实验原理电路图,了解各元件、测试点及开关的位置和作用。 2.放大器静态、动态指标的理论计算和测量方法。 3.根据电路参数估算有关待测的数据指标。 4.常用电子仪器的使用方法 四、实验内容和步骤

1.调节并测量静态工作点

接通+12V电源、调节RW,使IC=2.0mA(即UE=2.0V), 用直流电压表测量三极管3个电极对地电压及用万用表测量RB2值。记入表2-1。 表2-1 IC=2.0 mA

测量值 UB(V) UE(V) UC(V) RB2(KΩ) 2.86 2.17 7.23 51.6 2.测量电压放大倍数、输入电阻、输出电阻

UBE(V) 0.69 计算值 UCE(V) 4.37 IC(mA) 1.98 在放大器输入端A点和地之间加入频率为1KHz的正弦信号uS,用示波器观察放大器输出电压uO波形,调节函数信号发生器的输出旋钮,在输出波形不失真的条件下用示波器测量3组US 、Ui 、UO数据,绘画uO和ui的波形和相位关系,记入表2-2。

表2-2 Ic=2.0mA

3

RLUS(峰(K峰值Ω) V) ∞ 0.22 Ui(峰峰值V) UO(峰峰值V) Au Ri R0 ui波形 uO波形 0.074 1.60 21.6 0.074 0.80 10.8 0.082 1.75 21.3 0.082 0.88 10.7 0.235 4.90 20.8 0.235 2.45 10.4 5k 5k 5k 5k 5k 5k 2.4k 2.4k 2.37k 2.37k 2.4k 2.4k 2.4 0.22 ∞ 0.25 2.4 0.25 ∞ 0.70 2.4 0.70 3.观察静态工作点对输出电压波形的影响

在第二步的实验电路中,由直流电压表测出UCE值,记录输出波形。再逐步加大输入信号,使输出电压u0 足够大但不失真。 然后保持适当输入信号不变,分别增大和减小RW,改变静态工作点,直到输出电压波形出现较明显的饱和或截止失真,绘出所观察到的u0波形,并测出失真情况下的IC和UCE值,记入表2-3中。每次测IC和UCE 值时都要关闭信号源。

表2-3 RL=∞

IC(mA) 0.73 UCE(V) 9.45 uO波形 失真情况 顶部失真 晶体管工作状态 工作在截止区域 2.0 4.8 正常放大 工作在放大区域 3.33 0.17 底部失真 工作在饱和区域

五、实验总结报告

1.由表2-1所测数据讨论RB2对IC及UCE的影响,取β=50,计算rbe1及Au1,并与实测Au1进行比较。 2.由表2-2所测数据讨论负载电阻对电压放大倍数的影响。

3.由步骤3观测结果,讨论静态工作点对放大器输出波形的影响。若放大器的输出波形失真,应如何解决?

4