机械工程材料课后答案 联系客服

发布时间 : 星期日 文章机械工程材料课后答案更新完毕开始阅读31268611bed126fff705cc1755270722192e598d

加合金渗碳钢的淬透性。

7、何谓调质钢?为什么调质钢的含碳量均为中碳?合金调质钢中常加入哪些合金元素?它们在钢中起什么作用?

调质钢一般指经过调质处理后使用的碳素结构钢和合金结构钢。调质钢的含碳量一般在 0.25~0.50%之间,属于中碳钢。碳量过低,钢件淬火时不易淬硬,回火后达不到所要求的强度。碳量过高,钢的强度、硬度虽增高,但韧性差,在使用过程中易产生脆性断裂。常用合金调质钢通常加入的合金元素有Cr、Ni、 Si、Mn、B等,主要是为了提高钢的淬透性及保证强度和韧性而加入的。

8、弹簧钢的含碳量应怎么确定?合金弹簧钢中常加入哪些合金元素?最终热处理工艺如何确定?

弹簧钢可分为碳素弹簧钢与合金弹簧钢。碳素弹簧钢是常用的弹簧材料之一,其含碳量为 0.6~0.9%。合金弹簧钢的含碳量低一些,约介于0.45~0.70%之间,考虑到合金元素的强化作用,降低含碳量有利于提高钢的塑性和韧性。合金弹簧钢中所含合金元素经常有Si、Mn、Cr、V等,它们的主要作用是提高钢的淬透性和回火稳定性,强化铁素体和细化晶粒,从而有效地改善了弹簧钢的力学性能。根据弹簧的加工成型状态不同,弹簧分为热成型弹簧与冷成型弹簧,热成型弹簧的最终热处理为淬火后中温回火;冷成型弹簧则是用冷拉弹簧钢丝经冷卷后成型,然后进行低温去应力退火。

9、 滚动轴承钢的含碳量如何确定?钢中常加入的合金元素有哪些?其作用如何? 滚动轴承钢的含碳量为 0.95~1.15%,这样高的含碳量是为了保证滚动轴承钢具有高的硬度和耐磨性。主加元素是Cr,其作用可增加钢的淬透性,铬与碳所形成的(Fe、Cr) 3 C合金渗碳体比一般Fe 3 C渗碳体稳定,能阻碍奥氏体晶粒长大,减小钢的过热敏感性,使淬火后得到细小的组织,而增加钢的韧性。Cr还有利于提高回火稳定性。对于大型滚动轴承(如D>30~50mm的滚珠),还须加入适量的Si(0.40~0.65%)和Mn(0.90~1.20%),以便进一步改善淬透性,提高钢的强度和弹性极限而不降低韧性。

11、9SiCr制造的圆板牙,写出加工简明工艺路线,说明各工序作用及板牙在使用状态下的组织及大致硬度。

下料→球化退化→机械加工→淬火 +低温回火→磨平面→抛槽→开口 球化退火:降低硬度,便于机械加工,并为最终热处理做好组织上的准备。

淬火 +低温回火:保证最终使用性能(高的硬度和良好的韧性),减小变形(分级淬火),降低残余内应力。最终组织为:下贝氏体+碳化物。硬度大于60HRC。

12、何谓红热性(红硬性)?为什么W18Cr4V钢在回火时会出现“二次强化”现象?65钢淬火后硬度可达60-62HRC

,为什么不能制车刀等要求耐磨的工具?

热硬性(红硬性)是指外部受热升温时工具钢仍能维持高硬度(大于 60 HRC)的功能。W18Cr4V出现二次硬化的原因是在550~570℃温度范围内钨及钒的碳化物(WC,VC)呈细小分散状从马氏体中沉淀析出,产生了弥散硬化作用。同时,在此温度范围内,一部分碳及合金元素从残余奥氏体中析出,从而降低了残余奥氏体中碳及合金元素含量,提高了马氏体转变温度。当随后回火冷却时,就会有部分残余奥氏体转变为马氏体,使钢的硬度得到提高。由于以上原因,在回火时便出现了硬度回升的“二次硬化”现象。

而 65钢虽然淬火后硬度可达60~62HRC但由于其热硬性差,钢中没有提高耐磨性的碳化物,因此不能制造所要求耐磨的车刀。

13、W18Cr4V钢淬火加热温度如何确定?按常规方法进行淬火加热能否达到性能要求?为什么?淬火后为什么进行三次回火?

高的热硬性主要取决于马氏体中合金元素的含量,即加热时溶于奥氏体中合金元素的量,由于对高速钢热硬性影响最大的两个元素—— W及V,在奥氏体中的溶解度只有在1000℃以上时才有明显的增加,在1270~1280℃ 时奥氏体中约含有7~8%的钨,4%的铬,1%的钒。温度再高,奥氏体晶粒就会迅速长大变粗,淬火状态残余奥氏体也会迅速增多,从而降低高速钢性能。这就是淬火温度定在1280℃的原因。选择三次回火是因为因为W18Cr4V钢在淬火状态约有20~25%的残余奥氏体,仅靠一次回火是难以消除的。因为淬火钢中的残余奥氏体是在随后的回火冷却过程中才能向马氏体转变。回火次数愈多,提供冷却的机会就愈多,就越有利于残余奥氏体向马氏体转变,减少残余奥氏体量(残余奥氏体一次回火后约剩1 5%,二次回火后约剩3~5%,第三次回火后约剩下2%)。而且,后一次回火还可以消除前一次回火由于残余奥氏体转变为马氏体所产生的内应力。

14、CrWMn钢制造精密量具所需的热处理工艺。

热处理工艺为:球化退火(降低硬度,便于切削加工,为最终热处理做组织准备) 淬火:其目的是为了保证块规具有高的硬度(62~65HRC),耐磨性何和长期的尺寸稳定性。

冷处理后的低温回火:是为了减小应力,并使冷处理后的过高硬度(66 HRC左右)降低至所要求的硬度(62~65HRC)

时效处理原则:是为了消除新生的磨削应力,使量具残余应力保持在最小程度。 15、Cr12MoV钢制造冷作磨具,如何热处理?

Cr12MoV钢类似于高速钢,也需要反复的锻打,把大块的碳化物击碎,锻造后也要进行球化退火,以便降低硬度,便于奥氏体加工。经机械加工后进行淬火,回火处理。必须指出,如果对Cr12MoV钢还要求有良好的热硬性时,一般可将淬火温度适当提高至1115~1130℃,但会因组织粗化而使钢的强度和韧性有所将低。淬火后,由于组织中存在大量残余奥氏体(>80%)而使硬度仅为42~50HRC,但在510~520℃回火时会出现二次硬化现象,是使钢的硬度回升至60~61HRC。

16、与马氏体不锈钢相比,奥氏体的特点?为提高耐蚀性采用什么工艺?

奥氏体不锈钢中加入了扩大γ相区降低 Ms点的合金元素(如Ni),使钢室温下具有单相奥氏体组织。钢中加Ti是为了消除钢的晶间腐蚀倾向。为提高其耐腐蚀性常用的热处理工艺有固溶处理,稳定性处理及除应力处理。

17、常用的耐热钢有哪几种?合金元素在钢中作用?用途? 耐热钢包括抗氧化钢和热强钢。

提高钢的氧化性,钢中通常加入足够的Cr, Si, Al和稀土等元素。使钢在高温下与氧接触时,表面能生成致密的高熔点的氧化膜,它严密的覆盖在钢的表面,可以保护免于高温气体的继续腐蚀。抗氧化钢多用来制造炉用零件和热交换器。加强钢中常加入铬,镍,钼,钨,钒,锰等元素,用以提高钢的高温强度。汽轮机、燃气轮机的转子和叶片,锅炉过热器,高温工作的螺栓和弹簧,内燃机排气阀等用钢都是热强钢。 18 、指出下列钢类别,用途,碳及合金元素的主要作用和热处理特点。

( 1 )、 20CrMnTi : 渗碳钢。用于承受较强烈的冲击作用和受磨损的条件下进行工作的零件。 0 . 2 % 的碳含量保证了渗碳零件的心部具有良好的韧性和塑性, Cr、Mn、Ti等合金元素所起的主要作用是增加钢的淬透性,提高钢的心部的强度。另外,少

量的Ti可形成稳定的合金碳化物,起到细化晶粒、抑制钢件在渗碳时发生过热的作用。渗碳钢的主要热处理工序一般是在渗碳之后再进行淬火和低温回火。处理后零件的心部为具有足够强度和韧性的低碳马氏体组织,表层为硬而耐磨的回火马氏体和一定量的细小碳化物组织。

( 2 )、 40MnVB : 调质钢。这类钢在多种负荷下工作,受力情况比较复杂的重要零件,要求具有高强度与良好的塑性及韧性的配合,即具有良好的综合机械性能。 0 . 4 %的含碳量保证 调质钢零件获得良好的综合机械性能;合金元素的加入,主要是为了提高钢的淬透性及保证强度和韧性而加入的。调质钢经过调质热处理后得到回火索氏体组织。调质钢零件,通常除了要求有良好的综合机械性能外,往往还要求表面有良好的耐磨性。为此,经过调质热处理的零件往往还要进行感应加热表面淬火。如果对表面耐磨性能的要求极高,则需要选用专门的调质钢进行专门的化学热处理。

( 3)、 60Si2Mn :弹簧钢。用于通过弹性变形储存能量,从而传递力和机械运动或缓和机械振动与冲击,如汽车、火车上的各种板簧和螺旋弹簧、仪表弹簧等,要求必须具有高的弹性极限。 0.6%的含碳量为了保证弹簧的强度要求;合金元素的主要作用是提高钢的淬透性和回火稳定性,强化铁素体和细化晶粒,从而有效地改善了弹簧钢的力学性能。淬火后中温回火,得到回火屈氏体组织。

( 4)、9Mn2V(5)、Crl2MoV:冷作模具钢。用来制造在冷态下使金属变形的模具钢种。为了保证模具经过热处理后获得高硬度和高耐磨性,冷作模具钢含有比较高的碳量。加入的合金元素,其作用主要是为了提高钢的淬透性,耐磨性及减少变形等。热处理采用淬火+低温回火的热处理工艺。

( 6)、5CrNiMo:热作模具钢。用来制造在受热状态下对金属进行变形加工的模具用钢。碳: 0.50%C,保证一定的强度、硬度和耐磨性;铬:主要是提高淬透性,并能提高回火稳定性,形成的合金碳化物还能提高耐磨性,并使钢具有热硬性;镍:镍与铬共同作用能显著提高淬透性,镍固溶于铁素体中,在强化铁素体的同时还增加钢的韧性。锰:在提高淬透性方面不亚于镍,但Mn固溶于铁素体中,在强化铁素体的同时使钢的韧性有所降低。钼:其主要作用是防止产生第二类回火脆性。另外钼也有细化晶粒,增加淬透性,提高回火稳定性等作用。热处理采用淬火+低温回火的热处理工艺。 ( 7)、1Crl3:马氏体型不锈钢。用于要求韧性较高与受冲击载荷下的耐腐蚀的结构钢零件。铬:能在阳极区表面上形成一层富Cr的氧化物保护膜,这层氧化膜会阻碍阳极区域的电化学反应,并能增加钢的电极电位而使其电化学腐蚀过程减缓,从而使含铬不锈钢获得一定的耐蚀性。热处理采用淬火+高温回火,得到回火索氏体组织。

( 8)、1Cr18Ni9Ti:奥氏体型不锈钢。含碳量很低,属于超低碳范围,这是因为含碳量增高对耐蚀性是不利的。合金元素铬主要产生钝化膜,阻碍阳极电化学腐蚀反应,增加钢的耐蚀性;含约9%Ni主要作用是扩大γ区并降低Ms点(降低至室温以下)。使钢在室温时具有单相奥氏体组织。热处理:固溶处理,让所有碳化物全部溶于奥氏体,然后水淬快速冷却,不让奥氏体在冷却过程中有碳化物析出或发生相变,在室温下获得单相的奥氏体组织,提高耐蚀性。

( 9)、ZGMnl3:高锰耐磨钢。用于制造有强烈摩擦或撞击时的抗磨损的工件。Mn:C比值不小于10。为了使高锰钢全部获得奥氏体组织须进行“水韧处理”。 <习题八>

一、名词解释:

1.白口铸铁:碳除少量溶于铁素体外,其余全部以化合态的渗碳体析出,凝固后断口

呈白亮的颜色,故称为白口铸铁。

2.灰口铸铁:碳大部分以游离状态的石墨析出,凝固后断口呈暗灰色,故称为灰口铸铁 3.可锻铸铁:可锻铸铁是先将铁水浇注成白口铸铁,然后经过石墨化退火,使游离渗碳

体发生分解形成团絮状石墨的一种高强度灰口铸铁。

4.球墨铸铁:石墨呈球状分布在基体上的灰口铸铁称为球墨铸铁。

5.石墨化:铸铁中石墨的形成过程称为石墨化过程.根据铁合金双重状态图,铸铁的石

墨化过程可分为三个阶段.第一阶段,液相至共晶结晶阶段. 第二阶段,共晶至共析转变之间阶段. 第三阶段,共析转变阶段.

6.孕育铸铁:经过孕育处理,获得基体组织上分布细小片状石墨的灰铸铁,称为孕育

铸铁。

二、铸铁的石墨化过程是如何进行的?影响石墨化的主要因素有哪些? 1. 铸铁的石墨化过程:

铸铁中石墨的形成过程称为石墨化过程.根据铁合金双重状态图,铸铁的石墨化过程可分为三个阶段.

第一阶段,液相至共晶结晶阶段.包括从过共晶成分的液相中直接结晶出一次石墨和共晶成分的液相结晶出奥氏体和石墨;以及由一次渗碳体和共晶渗碳体在高温退火时分解为奥氏体和石墨。

第二阶段,共晶至共析转变之间阶段.包括从奥氏体中直接析出二次石墨和二次渗碳体在此温度区间内分解为奥氏体和石墨

第三阶段,共析转变阶段.包括共析转变时,奥氏体转变为铁素体和石墨及共析渗碳体退火时分解为铁素体和石墨。 2.影响石墨化过程的主要因素: A.铸铁的化学成分对石墨化的影响

①碳和硅:碳和硅都是强烈促进石墨化的元素.

②锰:锰是阻碍石墨化的元素.它能溶于铁素体和渗碳体中,其固碳的作用,从而阻碍石墨化.

③硫:硫是有害元素,阻碍石墨化并使铸铁变脆. ④磷:磷是一个促进石墨化不显著的元素. B:冷却速度对石墨化过程的影响 冷却速度越慢,越有利于石墨化。

三、试述石墨形态对铸铁性能的影响。

灰铸铁中石墨呈片状,片状石墨的强度、塑性、韧性几乎为零,存在石墨地方就相当于存在孔洞、微裂纹,它不仅破坏了基体的连续性,减少了基体受力有效面积,而且在石墨片尖端处形成应为集中,使材料形成脆性断裂。石墨片的数量越多,尺寸越粗大,分布越不均匀,铸铁的抗拉强度和塑性就越低。

可锻铸铁中石墨呈团絮状。与灰铸铁相比对金属基体的割裂作用较小,可锻铸铁具有较高的力学性能,尤其是塑性与韧性有明显的提高。

球墨铸铁中石墨呈球状,所以对金属基体的割裂作用较小,使得基体比较连续,在拉伸时引起应力集中的现象明显下降,从而使基体强度利用率从灰铸铁的30%~50%提高到70%~90%,这就使球墨铸铁的抗拉强度、塑性和韧性、疲劳强度不仅高于其它铸铁,而且可以与相应组织的铸钢相比。

总之,石墨的形状越接近于球形,铸铁的强度、塑性及韧性越高。

四、比较各类铸铁的性能特点,与钢相比铸铁在性能(包括工艺性能)上有何优缺点?

白口铸铁组织中存在着共晶莱氏体,性能硬而脆,很难切削加工,但其耐磨性好,铸造性能优良。

灰铸铁组织中碳全部或大部分以片状石墨形式存在,断口呈暗灰色。其铸造性能、切削加工性、减摩性、消震性能良好,缺口敏感性较低。

与钢相比,铸铁中含碳及含硅量较高。同时,含有较多硫、磷等杂质元素。铸铁的