气质联用 联系客服

发布时间 : 星期五 文章气质联用更新完毕开始阅读3202b51452d380eb62946d6a

第一章 气相色谱-质谱联用技术

气质联用仪是分析仪器中较早实现联用技术的仪器,自1957年J.C.Holmes和F.A.Morrell首次实现气相色谱和质谱联用以后,这一技术得到了长足的发展。在所有联用技术中气质联用,即GC/MS发展最完善,应用最广泛。目前从事有机物分析的实验室几乎都把GC/MS作为主要的定性确认手段之一,同时GC/MS也被用于定量分析。另一方面,目前市售的有机质谱仪,不论是磁质谱、四极杆质谱、离子阱质谱还是飞行时间质谱(TOF),傅立叶变换质谱(FTMS)等均能和气相色谱联用。还有一些其他的气相色谱和质谱连接的方式,如气相色谱-燃烧炉-同位素比质谱等。GC/MS已经成为分析复杂混合物最为有效的手段之一。

气质联用法是将气-液色谱和质谱的特点结合起来的一种用于确定测试样品中不同物质的定性定量分析方法,其具有GC的高分辨率和质谱的高灵敏度。气相色谱将混合物中的组分按时间分离开来,而质谱则提供确认每个组分结构的信息。气相色谱和质谱由接口相连。气质联用法广泛应用于药品检测、环境分析、火灾调查、炸药成分研究、生物样品中药物与代谢产物定性定量分析及未知样品成分的确定。气质联用法也被用于机场安检中,用于行李中或随身携带物品的检测。

气质联用仪系统一般有下图所示的部分组成。

真空系统 气相色谱 接口 离子化 质谱检测器 分析结果 计算机 图1.1 气质联用仪组成框图

气质联用仪根据其要完成的工作被设计成不同的类型和大小。由于在现代质谱仪中最常用的质量分析器是四极杆型的,所以,在本章中将主要介绍这种将不同质量离子碎片分离的方法。

第一节 气相色谱仪简介

气相色谱仪,通过对欲检测混合物中组分有不同保留性能的气相色谱色谱柱,使各组分分离,依次导入检测器,以得到各组分的检测信号。按照导入检测器的先后次序,经过对比,可以区别出是什么组分,根据峰高度或峰面积可以计算出各组分含量。通常采用的检测器有:热导检测器,火焰离子化检测器,氦离子化检测器,超声波检测器,光离子化检测器,电子捕获检测器,火焰光度检测器,电化学检测器,质谱检测器等。

汽化室 检测器 载气 计算机工作站

色谱柱 流量计 柱箱

图1.2 气相色谱流程图

一、 气相色谱仪的组成

气相色谱仪的基本构造有两部分,即分析单元和显示单元。前者主要包括气源及控制计量装置﹑进样装置﹑恒温器和色谱柱。后者主要包括检定器和自动记录仪。色谱柱(包括固定相)和检定器是气相色谱仪的核心部件。气相色谱仪主要由以下六大系统组成:

(1)载气系统 气相色谱仪中的气路是一个载气连续运行的密闭管路系统。整个载气系统要求载气纯净、密闭性好、流速稳定及流速测量准确。

(2)进样系统 进样就是把气体或液体样品速而定量地加到色谱柱上端。

(3)分离系统分离系统的核心是色谱柱,它的作用是将多组分样品分离为单个组分。色谱柱分为填充柱和毛细管柱两类。

(4)检测系统检测器的作用是把被色谱柱分离的样品组分根据其特性和含量转化成电信号,经放大后,由记录仪记录成色谱图。

(5)信号记录或微机数据处理系统 目前气相色谱仪主要采用色谱数据工作站。色谱数据工作站记录色谱图,并能在同一张记录纸上打印出处理后的结果,如保留时间、被测组分质量分数等。

(6)温度控制系统 用于控制和测量色谱柱、检测器、气化室温度,是气相色谱仪的重要组成部分。

二、气相色谱常见检测器

(1)热导检测器

热导检测器(TCD)属于浓度型检测器,即检测器的响应值与组分在载气中的浓度成正比。它的基本原理是基于不同物质具有不同的热导系数,几乎对所有的物质都有响应,是目前应用最广泛的通用型检测器。由于在检测过程中样品不被破坏,因此可用于制备和其他联用鉴定技术。

(2)氢火焰离子化检测器

氢火焰离子化检测器(FID)利用有机物在氢火焰的作用下化学电离而形成离子流,借测定离子流强度进行检测。该检测器灵敏度高、线性范围宽、操作条件不苛刻、噪声小、死体积小,是有机化合物检测常用的检测器。但是检测时样品被破坏,一般只能检测那些在氢火焰中燃烧产生大量碳正离子的有机化合物。

(3)电子捕获检测器

电子捕获检测器(ECD)是利用电负性物质捕获电子的能力,通过测定电子流进行检测的。ECD具有灵敏度高、选择性好的特点。它是一种专属型检测器,是目前分析痕量电负性有机化合物最有效的检测器,元素的电负性越强,检测器灵敏度越高,对含卤素、硫、氧、羰基、氨基等的化合物有很高的响应。电子捕获检测器已广泛应用于有机氯和有机磷农药残留量、金属配合物、金属有机多卤或多硫化合物等的分析测定。它可用氮气或氩气作载气,最常用的是高纯氮。

(4)火焰光度检测器

火焰光度检测器(FPD)对含硫和含磷的化合物有比较高的灵敏度和选择性。其检测原理是,当含磷和含硫物质在富氢火焰中燃烧时,分别发射具有特征的光谱,透过干涉滤光片,用光电倍增管测量特征光的强度。

(5)质谱检测器

质谱检测器(MSD)是一种质量型、通用型检测器,其原理与质谱相同。它不仅能给出一般GC检测器所能获得的色谱图(总离子流色谱图或重建离子流色谱图),而且能够给出每个色谱峰所对应的质谱图。通过计算机对标准谱库的自动检索,可提供化合物分析结构的信息,故是GC定性分析的有效工具。常被称为色谱-质谱联用(GC-MS)分析,是将色谱的高分离能力与MS的结构鉴定能力结合在一起。

第二节 质谱简介

一、质谱仪器

质谱仪器一般由真空系统、进样系统、离子源、质量分析器和计算机控制与数据处理系统(工作站)等部分组成。见图1.2。

电气系统 进样系统 离子源 质量分析器 检测器 计算机控制与数据处理 真空系统 图1.2 质谱仪器工作方框图

(一)真空系统

质谱仪的离子源、质量分析器和检测器必须在高真空状态下工作,以减少本底的干扰,避免发生不必要的离子-分子反应。离子源的真空度应达10-3~10-4Pa,质量分析器和检测器的真空度应达10-4~10-5Pa以上。

质谱仪的高真空系统一般是由机械泵和涡轮分子泵串联组成。机械泵作为前级泵将真空系统抽到10-1~10-2Pa,然后再由涡轮分子泵继续抽到高真空。在与色谱联用的质谱仪中,离子源是通过“接口”直接与色谱仪连接,色谱的流动相可能会有一部分或全部进入离子源。为此,与色谱联用的质谱仪的离子源所使用的高真空泵的抽速应足够大,以保证色谱的流动相进入离子源后能及时、迅速地被抽走,保证离子源的高真空度。