2018全国高考II卷理科数学试题及答案解析 联系客服

发布时间 : 星期一 文章2018全国高考II卷理科数学试题及答案解析更新完毕开始阅读32a48df3f41fb7360b4c2e3f5727a5e9856a273b

..

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为年的数据(时间变量的值依次为

)建立模型①:

;根据2010年至2016

)建立模型②:

(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.

【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.

【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–30.4+13.5×19=226.1(亿元).

利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+17.5×9=256.5(亿元).

(2)利用模型②得到的预测值更可靠. 理由如下:

(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得

;..

..

到的预测值更可靠.

(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠. 以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.

点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点19. 设抛物线

(1)求的方程;

(2)求过点,且与的准线相切的圆的方程. 【答案】(1) y=x–1,(2)

【解析】分析:(1)根据抛物线定义得

,再联立直线方程与抛物线方程,利用韦达定理代入

求参数.

的直线与交于,两点,

的焦点为,过且斜率为

求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程. 详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0). 设A(x1,y1),B(x2,y2). 由

,故.

所以.

由题设知,解得k=–1(舍去),k=1.

因此l的方程为y=x–1.

(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为

,即

设所求圆的圆心坐标为(x0,y0),则

解得或

因此所求圆的方程为

;..

..

点睛:确定圆的方程方法

(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法 ①若已知条件与圆心的值;

②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值. 20. 如图,在三棱锥

(1)证明:(2)若点在棱

中,平面

,求

与平面

所成角的正弦值.

,为

的中点.

和半径有关,则设圆的标准方程依据已知条件列出关于

的方程组,从而求出

上,且二面角

【答案】(1)见解析(2)

【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果. 详解:(1)因为连结且由由

.因为,

知知

. . 平面

.

的方向为轴正方向,建立空间直角坐标系

.

,为,所以

的中点,所以

,且

.

为等腰直角三角形,

(2)如图,以为坐标原点,

;..

..

由已知得设设平面由

,则

的法向量为

.

,可取.

取平面的法向量.

所以.由已知得.

所以.解得(舍去),.

所以所以

与平面

.又,所以.

所成角的正弦值为.

点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 21. 已知函数

(1)若(2)若

,证明:当在

时,

只有一个零点,求.

【答案】(1)见解析(2)

;..