数字信号处理试题及参考答案 联系客服

发布时间 : 星期日 文章数字信号处理试题及参考答案更新完毕开始阅读3525463b9b89680202d8259d

波。

(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)

(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)

(c)高通滤波器损耗函数及其分离出的调幅信号y3(t)

图104. 实验4程序exp4.m运行结果

数字信号处理第 21 页 共 16 页

4 简要回答思考题

思考题(1)已经在10.4.2节解答。思考题(3)很简单,请读者按照该题的提示修改程序,运行观察。

思考题(3) 因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的

一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。

分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

(三)、FIR数字滤波器设计与软件实现

1.思考题

(1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤.

(2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为?pl和?pu,阻带上、下截止频率为?sl和?su,试求理想带通滤波器的截止频率?cl和?cu。

(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.实验报告要求

(1)对两种设计FIR滤波器的方法(窗函数法和等波纹最佳逼近法)进行分析比较,简述其优缺点。

(2)附程序清单、打印实验内容要求绘图显示的曲线图。 (3)分析总结实验结果。 (4)简要回答思考题。

2.信号产生函数xtg程序清单

function xt=xtg(N)

%实验五信号x(t)产生,并显示信号的幅频特性曲线

%xt=xtg(N) 产生一个长度为N,有加性高频噪声的单频调幅信号xt,采样频率Fs=1000Hz %载波频率fc=Fs/10=100Hz,调制正弦波频率f0=fc/10=10Hz. Fs=1000;T=1/Fs;Tp=N*T; t=0:T:(N-1)*T;

fc=Fs/10;f0=fc/10; %载波频率fc=Fs/10,单频调制信号频率为f0=Fc/10; mt=cos(2*pi*f0*t); %产生单频正弦波调制信号mt,频率为f0 ct=cos(2*pi*fc*t); %产生载波正弦波信号ct,频率为fc xt=mt.*ct; %相乘产生单频调制信号xt

数字信号处理第 22 页 共 16 页

nt=2*rand(1,N)-1; %产生随机噪声nt

%=======设计高通滤波器hn,用于滤除噪声nt中的低频成分,生成高通噪声======= fp=150; fs=200;Rp=0.1;As=70; fb=[fp,fs];m=[0,1];

% 滤波器指标

% 计算remezord函数所需参数f,m,dev

% 确定remez函数所需参数

dev=[10^(-As/20),(10^(Rp/20)-1)/(10^(Rp/20)+1)]; [n,fo,mo,W]=remezord(fb,m,dev,Fs);

hn=remez(n,fo,mo,W); % 调用remez函数进行设计,用于滤除噪声nt中的低频成分 yt=filter(hn,1,10*nt); %滤除随机噪声中低频成分,生成高通噪声yt

%================================================================ xt=xt+yt; %噪声加信号 fst=fft(xt,N);k=0:N-1;f=k/Tp;

subplot(3,1,1);plot(t,xt);grid;xlabel('t/s');ylabel('x(t)'); axis([0,Tp/5,min(xt),max(xt)]);title('(a) 信号加噪声波形')

subplot(3,1,2);plot(f,abs(fst)/max(abs(fst)));grid;title('(b) 信号加噪声的频谱') axis([0,Fs/2,0,1.2]);xlabel('f/Hz');ylabel('幅度')

3. 滤波器参数及实验程序清单

(1)、滤波器参数选取

根据10.5.1 节实验指导的提示③选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz。代入采样频率Fs=1000Hz,换算成数字频率,通带截止频率?p?2?fp??0.24?,通带最大衰为0.1dB,阻带截至频率?s?2?fs??0.3?,阻带最小衰为60dB。所以选取blackman窗函数。与信号产生函数xtg相同,采样频率Fs=1000Hz。

按照图10.5.2 所示的程序框图编写的实验程序为exp5.m。 (2)、实验程序清单

%《数字信号处理(第三版)学习指导》第10章实验5程序exp5.m % FIR数字滤波器设计及软件实现 clear all;close all;

%==调用xtg产生信号xt, xt长度N=1000,并显示xt及其频谱,========= N=1000;xt=xtg(N);

fp=120; fs=150;Rp=0.2;As=60;Fs=1000; % (1) 用窗函数法设计滤波器

wc=(fp+fs)/Fs; %理想低通滤波器截止频率(关于pi归一化) B=2*pi*(fs-fp)/Fs; %过渡带宽度指标 Nb=ceil(11*pi/B); %blackman窗的长度N hn=fir1(Nb-1,wc,blackman(Nb));

Hw=abs(fft(hn,1024)); % 求设计的滤波器频率特性 ywt=fftfilt(hn,xt,N); %调用函数fftfilt对xt滤波

%以下为用窗函数法设计法的绘图部分(滤波器损耗函数,滤波器输出信号波形) %省略

% 输入给定指标

数字信号处理第 23 页 共 16 页

% (2) 用等波纹最佳逼近法设计滤波器 fb=[fp,fs];m=[1,0];

% 确定remezord函数所需参数f,m,dev

dev=[(10^(Rp/20)-1)/(10^(Rp/20)+1),10^(-As/20)]; [Ne,fo,mo,W]=remezord(fb,m,dev,Fs); hn=remez(Ne,fo,mo,W); Hw=abs(fft(hn,1024));

% 确定remez函数所需参数

% 调用remez函数进行设计 % 求设计的滤波器频率特性

yet=fftfilt(hn,xt,N); % 调用函数fftfilt对xt滤波

%以下为用等波纹设计法的绘图部分(滤波器损耗函数,滤波器输出信号yw(nT)波形)

%省略

(3) 实验程序运行结果

用窗函数法设计滤波器,滤波器长度 Nb=184。滤波器损耗函数和滤波器输出yw(nT)分别如图10.5.3(a)和(b)所示。

用等波纹最佳逼近法设计滤波器,滤波器长度 Ne=83。滤波器损耗函数和滤波器输出ye(nT)分别如图10.5.3(c)和(d)所示。

两种方法设计的滤波器都能有效地从噪声中提取信号,但等波纹最佳逼近法设计的滤波器阶数低得多,当然滤波实现的运算量以及时延也小得多,从图10.5.3(b)和(d)可以直观地看出时延差别。

数字信号处理第 24 页 共 16 页

图10.5.3

(4 )简答思考题

(1) 用窗函数法设计线性相位低通滤波器的设计步骤教材中有详细的介绍. (2) 希望逼近的理想带通滤波器的截止频率?cl和?cu分别为:

?cl?(?sl??pl)/2, ?cu?(?su??pu)/2

(3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低?

①用窗函数法设计的滤波器,如果在阻带截止频率附近刚好满足,则离开阻带截止频率越远,阻带衰减富裕量越大,即存在资源浪费;

② 几种常用的典型窗函数的通带最大衰减和阻带最小衰减固定,且差别较大,又不能分别控制。所以设计的滤波器的通带最大衰减和阻带最小衰减通常都存在较大富裕。如本实验所选的blackman窗函数,其阻带最小衰减为74dB,而指标仅为60dB。

③ 用等波纹最佳逼近法设计的滤波器,其通带和阻带均为等波纹特性,且通带最大衰减和阻带最小衰减可以分别控制,所以其指标均匀分布,没有资源浪费,所以期阶数低得多。

数字信号处理第 25 页 共 16 页