毕业设计-三相电压型PWM整流器的研究 联系客服

发布时间 : 星期五 文章毕业设计-三相电压型PWM整流器的研究更新完毕开始阅读45e53d7548d7c1c708a14591

河南理工大学毕业设计

1 绪论

1.1 PWM整流器研究的背景与意义

随着现代社会的高速发展,在现代工业生产和人们日常生活中,很多场合都离不开对电的需求,但是由于近些年来煤炭、石油、天然气等不可再生能源不断地被大量过度地开采,有专家预测在未来的80多年以后,人类将再无这些能源可以使用,人类将面

临能源枯竭的尴尬境地,随之而来将会引起人们对电能的恐慌。

如何更好的节约能源,开发环保和可持续利用的新能源成了当今世界亟待解决的问题,特别是与国民生产生活密切相关的电力电子变换装置,如变频器、高频开关电源、逆变电源等各种变换装置的研究备受关注。因为这些变换装置大量被使用的同时,必定会带来一些不利因素:在这些大部分变换装置使用中首先需要整流环节将交流电压转换成直流电压,而整流环节主要是通过功率二极管或者晶闸管组成的整流电路;这种方式在交流侧容易造成电流波形畸变,并向电网注入大量的无功功率和谐波,将会给电网造成严重的电磁污染,以致影响同网其他设备的正常使用,同时还存在功率因数低、直流电压波动等问题,所以既能有效治理电网污染并提高电能利用率,又能环保节能的绿色能源措施越来越受到众多研究组织的关注和重视。

能够有效解决变换装置所带来的负面效应的根本措施就是需要求变换装置实现整流环节网侧电流达到正弦化,工作于单位功率因数等特性。一般来说,要想能够消除电网谐波且获得高功率因数的途径,主要有两种:一种是在系统中加入补偿器,如静止无功补偿器(Static Var Compensator)、有源电力滤波器(Active Power Filter)等达到补偿无功功率和谐波的目的;一种是改进整流环节的装置,优化电路拓扑结构和控制算法,使自身实现抑制谐波并可调节功率因素的效能。

随着现代电力电子技术的进步与飞速发展,功率半导体器件的性能也在逐步地提高,特别是全控型功率开关器件的不断出现,以及 PWM控制技术的应用,使PWM 整流器得以诞生。PWM 整流器采用的是全控开关器件,电路结构简单,工作频率高且容易实现,通过控制开关器件的通断就可以控制整流器输入的电流波形,实现电压电流同相位或反相位,网侧功率因数近似达到1,谐波含量少,直流侧电压可控,并且这种结构的整流器能在四象限运行,可以工作在整流或逆变状态,是真正意义上的绿色装置,因此对 PWM 整流器的控制研究意义重大。

1

河南理工大学毕业设计

1.2 PWM整流器的产生与发展现状

1.2.1 PWM整流器的产生

1957年,美国通用电气公司研制出第一个商用晶闸管,标志着电力电子技术的诞

生。它由于能够根据不同的用电场合,完成交—直、交—交、直—交、直—直的电能形式的变换,满足生产与生活的需求,在此后的几十年间得到大规模的应用。

八十年代初,随着对电力电子装置产生的谐波对电网产生的影响的认识不断加深,一些学者开始研究如何提高功率因数.Bellini和Figalli首先用GTO实现了真正意义上的单相PWM整流器,其功率因数接近1。到了80年代后期,由于GTR的普遍应用以及IGBT的大量使用促使PWM整流器向高频化发展,高频化可以大大提高了交流输入电流波形的正弦度,减少了直流输出电压纹波,提高了功率因数,增强了系统的稳定性。

PWM整流器按直流储能形式可分为电压型和电流型;按电网相数可分类为单相电路、三相电路和多相电路;按PWM开关调制可分为硬开关调制和软开关调制;按桥路结构可分类为半桥电路和全桥电路;按调制电平可分为两电平电路、三电平电路和多电平电路。

尽管分类方法多种多样,但最基本的分类方法就是将PWM整流器分类成电压型和电流型两大类,这主要是因为电压型、电流型PWM整流器,无论是在主电路结构、PWM信号发生以及控制策略等方面均各有各自的特点,并且两者间存在电路上的对偶性。其他分类方法就主电路拓扑结构而言,均可归类于电流型或电压型PWM整流器之列。

1.2.1电流型PWM整流器

CSR(电流型PWM整流器)的显著特征是直流侧采用电感进行直流储能,从而使CSR

直流侧呈现高阻抗的电流源特性。常采用的CSR结构有单相和三相。除直流储能电感外,与VSR相比,其交流侧增加了滤波电容,作用是与网侧电感一起组成LC三阶低通滤波器,以虑除CSR网侧谐波电流,并抑制CSR交流侧谐波电压。CSR功率开关管支路上顺向串联二极管,其主要目的是阻断反向电流(一般大功率开关管大都集成有反并联二极管),并提高功率开关管的反向耐压能力。

三相电流型PWM整流器的结构图如下:

2

河南理工大学毕业设计

图1-1 三相CSR拓扑结构

1.2.3电压型PWM整流器

电压型PWM整流器(Voltage Source Rectifier.VSR)最显著拓扑特征就是直流侧采用电容进行直流储能,从而使VSR直流侧呈低阻抗的电压源特性。由于其电路结构简单,便于控制,响应速度快,成为目前研究及实际应用较多的整流类型。

电压型PWM整流器有以下几种拓扑结构:单相半桥、全桥VSR拓扑,三相半桥、全桥VSR拓扑结构、三电平VSR拓扑结构和基于软开关调制的VSR拓扑结构。其中三相电压型PWM整流器就是本文研究的对象。

图1-2给出了三相半桥拓扑结构。通常所谓的三相桥式电路即指三相半桥电路。关于三相PWM整流器的工作原理将在下一节中专门论述。三相电压型PWM整流器也是本文进行电路建模、参数计算和控制器设计的基础。

3

河南理工大学毕业设计

图1-2三相半桥VSR拓扑结构

1.2.4 PWM整流器的发展现状

PWM整流器的研究始于20世纪80年代,这一时期由于自关断器件的日趋成熟及应用,推动了PWM技术的应用与研究。1982年Busse Alfred,Holtz Joachim首先提出了基于可关断器件的三相全桥PWM整流器拓扑及其网侧电流幅相控制策略,并实现了电流型PWM整流器网侧单位功率因数正弦波电流控制。1984年Akagi Hirofumi等提出了基于PWM整流器拓扑的无功补偿器控制策略,这实际上就是电压型PWM整流器早期设计思想。到20世纪80年代末,随着A. W. Green等人提出了基于坐标变换的PWM整流器连续离散动态数学模型及控制策略,PWM整流器的研究发展到一个新的高度。

自20世纪90年代以来,PWM整流器一直是学术界关注和研究的热点。随着研究的深人,基于PWM整流器拓扑结构及控制的拓展,相关的应用研究也发展起来,如有源滤波器、超导储能、交流传动、高压直流输电以及统一潮流控制等,这些应用技术的研究,又促进了PWM整流器及其控制技术的进步和完善。

这一时期PWM整流器的研究主要集中于以下几个方面: 1) PWM整流器的建模与分析;

2)电压型PWM整流器的电流控制; 3)主电路拓扑结构研究; 4)系统控制策略研究;

5)电流源型PWM整流器研究;

4