毕业设计-三相电压型PWM整流器的研究 联系客服

发布时间 : 星期二 文章毕业设计-三相电压型PWM整流器的研究更新完毕开始阅读45e53d7548d7c1c708a14591

河南理工大学毕业设计

3 三相VSR控制系统设计

通过第2章对三相电压型PWM整流器的工作原理分析,得出了通过控制网侧的输入电流,就可以实现单位功率因数和PWM整流器四象限里运行,所以对网侧的电流控制也是对整个系统控制的关键。此外,在实际应用中,还需要稳定直流侧的电压,对这一目标采用电压外环的控制加以实现。

3.1 VSR的电流控制

VSR的建模及工作原理分析表明,当其正常工作时,在能够稳定直流侧电压的同时,实现网侧在受控功率因数条件下的正弦波形电流控制。另一方面,当VSR应用于有源电力滤波器等领域时,对其网测电流的控制决定了系统性能的指标的优劣。因此,VSR的电流控制策略是十分重要的。

常规的VSR控制系统一般采用双闭环控制,即电压外环和电流内环控制。目前,VSR电流控制技术根据是否引入电流闭环,分为两大类,即间接电流控制和直接电流控制。

3.1.1 间接电流控制

间接电流控制或被称为相位幅值控制,顾名思义它不是直接对电流控制,其实质是通过PWM的控制,在整流器交流器产生幅值和相位都能够控制的正弦电压,并使该电压与电网电压通过对电感的作用,形成幅值和相位也能够控制的正弦基波电流,从而达到控制电流的目的。尽管间接电流控制的动态性能欠佳,但因其控制简单、成本低廉,在对PWM整流器动态性能要求不高的场合,间接电流控制仍然有一定的应用前景。

应用SPWM技术,通过对调制电压的控制就可以实现对整流器输入电压相位和幅值的调节。为了稳定输出电压,间接电流控制需要引入电压闭环反馈。间接电流控制原理框图如图3-1。

UabcPI幅值相位控制SPWM调制ABC主电路 图3-1 间接电流控制原理框图

17

河南理工大学毕业设计

当整流器负载波动时,通过调节输入电压的幅值和相位按一定的轨迹移动,可以使整流器重新达到稳态且输入功率因数保持不变。实际上,间接控制策略的目标就是根据检测到的输出电压和电网电压信号,控制整流器输入电压矢量按需要的轨迹移动。

间接电流控制虽有一定的应用空间,但其缺点却是不可忽略的。其缺点如下: (a)系统动态性能不佳,整流器的输入电感具有较大时间常数,而幅相控制没有采取任何措施补偿电感的时滞作用;

(b)动态过程中存在直流电流偏移和很大的电流过冲,而控制器本身没有限流功能,因而需要有过流保护;

(c)控制信号的运算过程中乃至电路的参数,控制信号对系统参数的波动较为敏感。

针对上述缺点,有一些改进的办法,比如引入电流微分或动态解耦的串联补偿,利用零极点对消的原理可心改善整流器的电流响应特性,在间接电流控制基础上增加功率因数角闭环,通过模糊控制器对交流侧电压幅值和相位进行前馈补偿,可心使PWM整流器在电网电压波动或电路参数变化等扰动下保护单位功率因数和稳定的直流输出电压。这些改进方案的提出,可以促进间接电流控制实用化。

3.1.2直接电流控制

VSR直接电流控制是针对VSR间接电流控制的不足(动态响应慢、对参数敏感)而提出来的。这种直接电流控制与间接电流控制在结构上的主要差别在于,前者具有网侧电流闭环控制,而后者则无网侧电流闭环控制,同时也使网侧电流控制对系统参数不敏感,从而增强了电流控制系统的稳定性。

对网压而言,电流内环实质起到前馈作用;控制电路具有限流保护能力,由于系统在每一个载波周期都对电流进行比较,因此故障情况下过电流保护迅速,可靠性高。

直接电流控制方案物理意义清晰,控制电路简单,控制效果良好。直接电流控制中双闭环控制是目前应用最广泛,最实用化的控制方式,其中电压外环是控制直流侧电压的,并给电流内环提供指令电流;电流内环则根据指令电流进行电流快速跟踪控制。

由于VSR电流内环性能不仅影响直流侧电压响应,而且当VSR应用于诸如有源电力滤波器(APF)等领域时,其网侧电流的控制性能便决定了系统性能指标的优劣,因而VSR直接电流控制策略的研究引起了学术界广泛关注,先后提出了固定开关频率PWM电流控制、滞环PWM电流控制等。其中,固定开关频率PWM电流控制其算法简便,物理意义清晰,且实现较方便。另外,由于开关频率固定,因而网侧变压器及滤波电感设计较容易,

18

河南理工大学毕业设计

并且有利于限制功率开关损耗。但该方案的主要缺点是,在开关频率不高条件下,电流动态响应相对较慢,且电流动态偏差随电流变化率而相应变化。相比之下,滞环PWM电流控制则具有较快的电流响应,且电流跟踪动态偏差由滞环宽度确定,而不随电流变化率变化而变动。但该方案主要不足就是,开关频率随电流变化率变化而波动,造成网侧滤波电感设计困难,功率模块应力及开关损耗增大,因而在大功率变流领域难以应用,为此提出了基于固定开关频率的滞环PWM电流控制策略。 1固定开关频率PWM电流控制基本原理及控制算法

所谓固定开关频率PWM电流控制,一般是指PWM载波(如三角波)频率固定不变,而以电流偏差调节信号作为调制波的PWM控制方法,其电流环控制结构如图3-2所示。

图3-2固定开关频率PWM电流控制闭环结构 2滞环PWM电流控制

当开关频率人按一定规律变化时,电流跟踪性能将得以改善,电流偏差将在某一限定值内基本不变,这对要求电流跟踪精度较高的控制系统十分重要。而滞环PWM电流控制则可以实现上述要求。这种电流控制结构中无传统的电流调节器(如P,PI调节器等),取而代之的是一非线性环节—滞环。当电流偏差超越滞环宽度时,主电路开关切换,并迫使电流偏差减小,显然这是一种典型的非线性控制。研究表明,滞环PWM电流控制具有较好的稳定性和快速性。

3.2三相VSR双闭环控制系统的设计

在三相VSR控制系统设计中,一般采用双闭环控制,即电压外环和电流内环。双闭环控制系统中的电压外环是为了控制稳定直流侧电压,根据电压的大小调整整流器工作的状态,并给电流内环输出给定值;电流内环是使检测的输入电流能够跟踪给定电流,实现单位功率因数的整流或逆变。在前面分析整流器数学模型中,在三相静止 abc坐标

19

河南理工大学毕业设计

系下难以设计控制系统,而且对系统控制做不到无静差,所以,双闭环控制建立在同步旋转d-q坐标系下数学模型基础上的。而在同步旋转坐标系下,d 轴和q轴变量之间相互耦合,那么,在d-q 坐标系耦合状态下进行解耦,希望一个变量仅受另一个变量控制,系统解耦方法一般采用串联补偿解耦和前馈补偿解耦,本文研究的系统主要采用前馈补偿解耦控制的方法。

其控制结构图如下:

图3-3 整流器控制结构图

3.2.1 电流内环控制系统设计

由前面叙述可以知道,三相VSR的d-q模型可以描述为

??Ldiddt?ed?vd?Rid??Liq? ??Ldiqdt?eq?vq?Riq??Li ?d???Cdvdcdt?32(idsd?iqsq)?iL式中,e?d、eq——电网电动势矢量Edq的d、q分量;

20

3-1)