生化习题及大纲 联系客服

发布时间 : 星期一 文章生化习题及大纲更新完毕开始阅读48f5847cb307e87100f69608

③琥珀酸、CoQ、细胞色素c、复合物Ⅱ、Ⅲ和Ⅳ; ④琥珀酸、CoQ、细胞色素c、复合物Ⅱ和Ⅲ。

5.把一种广泛使用的处方止痛药Demerol(地美罗)加入到处在呼吸状态的线粒体悬

浮液中,[NADH]/[NAD]和[CoQ]/[CoQH2]的比例增高。哪个部位电子传递复合物被Demerol抑制?

6.如果呼吸复合物Ⅱ和Ⅳ在有氧的条件下,在琥珀酸、CoQ和细胞色素c存在下一起保温,将会发生什么样的氧化还原反应?在这一反应系统中,你预期检测到还原型的细胞色素c的量有大的升高吗?为什么?

7.鱼藤酮是一种非常有效的杀虫剂和鱼的毒剂。在分子水平上,它的作用方式是阻止电子从NADH脱氢酶的FMN传递到CoQ上。抗霉素A是CoQH2氧化的强烈抑制剂。 ①为什么昆虫和鱼吸收鱼藤酮后会死亡? ②为什么抗霉素A是动物的一种毒剂?

③假定鱼藤酮和抗霉素A在呼吸链上抑制它们各自部位方面具有同等的效果,那么哪一种是更为有效的毒剂呢?

8.请叙述由无氧代谢向有氧代谢转变时 [NADH]/[NAD]和[ATP]/[ADP] 发生变化的原因以及由此产生的代谢效应。

9.虽然ATP的合成需要Pi,但ATP合成的速度主要取决于ADP的浓度而不是Pi。为什么?

10.缬氨霉素(Valinomycin)是一种由链霉菌产生的抗菌素。把它加入到活跃呼吸的线粒体中,发生如下几种现象:ATP的产生减少,氧消耗速度增高,热被释放,跨线粒体内膜的pH梯度增高。缬氨霉素是氧化磷酸化的解偶联剂还是抑制剂?请根据该抗菌素对线粒体内膜转运K+的能力予以解释。

11.褐色脂肪是存在于幼年动物颈部和背部的一种脂肪组织,它含有极为众多的线粒体,因而使得这种组织呈褐色的外表。在某些越冬动物和冷适应动物中也能找到褐色脂肪。在褐色脂肪的线粒体中,当NADH被氧化时,每消耗1个氧原于所产生的ATP低于1分子。褐色脂肪组织线粒体的这种低P/O比产生的机制是怎样的?这种低P/O比的生理功能是什么?

习题解答:

1.解答:在苹果酸-天冬氨酸穿梭系统中,胞液草酰乙酸的还原消耗了一个由苹果酸氧化释放到基质中的质子。因此,对于每个被氧化的胞液NADH来说,给质子梯度的贡献减少了一个质子。这就是说,由胞液转移而来的每分子NADH 的电子经电子传递链转移所“泵”出的质子只有9个,比线粒体本身产生的NADH少贡献一个质子。因此,每分子胞液NADH氧化所产生的ATP是2.25ATP而不是2.5ATP。(对此题的回答考虑了穿梭过程中质子的损失。)

2.解答:两种放射性标记的NADH具有如下的结构:

线粒体内膜对NADH是不可通透的,这可通过7-C-NADH不出现在线粒体中的观察而得到支持。但是来自线粒体外的NADH上的还原当量却可以通过苹果酸-天冬氨酸穿梭被转移到线粒体中。在这个穿梭过程中,来自4-3H-NADH上的还原当量(以NADH烟酰胺环C-4位的氧负离子形式)转移给草酰乙酸,后者经苹果酸脱氢酶还原为苹果酸。这样得到的3H-14

标记的苹果酸跨线粒体内膜被转运。一旦进入到线粒体基质中,3H-氢负离子便转给NAD+,形成有标记的线粒体内的NADH。然后NADH即可通过呼吸链而被氧化。

3.解答:泛醌有许多辅酶特征:它是低分子量物质;它是一种必须从食物中获得的物质;它不是蛋白质,但它是酶促反应(复合物I、Ⅱ和Ⅲ)的辅助因子;它能以游离的或与蛋白质结合的形式出现,它的功能是集中还原当量(象NAD+一样)。泛醌的苯醌部位参与氧化还原反应,能够接受和供出H+和电子。它的长长的类异戊二烯侧链使得其整个分子在膜脂层中是可溶的,因而允许它在半流动的膜中扩散。这一特性是很重要的。因为这使得泛醌能从复合物I或Ⅱ把电子传递到复合物Ⅲ,而这三个复合物都被包埋在线粒体内膜中。

4.解答:①复合物Ⅲ是最后的电子受体。细胞色素c的缺乏阻止了电子进一步通过。②没有电子通过,因为缺乏复合物Ⅰ。③O2是最后的电子受体。④细胞色素c是最终的电子受体。

5.解答:复合物Ⅰ与Demerol相互作用阻碍电子从NADH向CoQ转移。NADH浓度

的增高是由于它不能被氧化成NAD。CoQ浓度的升高是由于电子从CoQH2传递给O2,而CoQ则不再还原成CoQH2。

6.解答:当复合物Ⅱ、Ⅳ在题中给定的条件下保温,电子传递只是部分发生,即琥珀酸氧化成延胡素酸,该反应产生的FADH2经复合物Ⅱ传递给CoQ,被还原的CoQ(CoQH2)上的电子不能继续往下传递。

在该反应系统中,还原型的细胞色素c的量不会升高。因为在该反应系统中缺乏复合物Ⅲ(CoQ-细胞色素c氧化还原酶),CoQH2上的电子不能越过复合物Ⅲ直接传递给细胞色素c。这表明在整个呼吸链系统中,电子的传递有着严格的顺序,只能以电势递增的趋势传递,不能越过传递链中间某组分往下传递。

7.解答:①由于鱼藤酮抑制了NADH脱氢酶,阻止电子从FMN传递到CoQ,其结果是降低了ATP产生的速度。如果这一传递部位完全被抑制,ATP不能满足生理上的需要,因而会造成生物死亡。

②抗霉素A强烈地抑制CoQH2的氧化。由于电于传递与ATP产生是紧密偶联的,因此电子传递的抑制就会对ATP的产生造成抑制。象鱼藤酮一样,抗霉素A也是一种毒剂,因为不能满足生物对ATP的需要。

③虽然鱼藤酮强烈地抑制NADH脱氢酶,如果电子来源是FADH2,那么电子传递链仍然保留部分的运转。但是,若电子传递链被抗霉素A抑制,电子传递链就会完全停止运转,因为CoQH2的氧化是电子源NADH和FADH2进入呼吸链被氧化的共同步骤。因此,即使鱼藤酮和抗霉素A在它们各自抑制部位上具有相同的抑制效果,但是两者比较,抗霉素A则是更为有效的毒物。

8.解答:由无氧代谢向有氧代谢转变时,容许ATP经由氧化磷酸化产生。ADP的磷酸

化增高了[ATP]/[ADP]的比例,进而增高[NADH]/[NAD],因为高的ATP质量作用比降低电子的传递速度。[ATP]和[NADH]的增高抑制它们在糖酵解和柠檬循环中的靶酶,从而降低这些代些过程的强度。

9.解答:在细胞内,Pi的稳态浓度比ADP的稳态浓度高得多。当ADP浓度作为ATP消耗的结果而升高时,Pi的浓度只有很小的变化。因此,Pi不能作为一种调节物。然而ADP却处于限速浓度,ATP合成的速度受ADP浓度的控制。ATP合成的这种控制方式叫做受体控制或呼吸控制。

10.解答:缬氨霉素的加入所产生的效应与解偶联剂的作用是基本一致的。在进行呼吸的线粒体中,当电子传递时,H+质子从基质转移到外侧,产生H+质子梯度和跨膜的电位。用来合成ATP的大部分自由能来自这种电位。缬氨霉素与K+结合形成一种复合物,该复合物穿过线粒体内膜,当一个H+质子通过电子传递而被转移时,一个K+离子亦作相反的转移。

结果是膜两侧的正电荷总是平衡的,跨膜的电位亦消失了。于是就导致没有足够的质子推动力推动ATP的合成。换句话说:电子传递和磷酸化作用的偶联被解除了。与ATP合成效率减少相反,电子传递速度显著升高。其结果是H+梯度、氧消耗量以及热量散失都增大。

缬氨霉素是一种专一于K+的离子载体,它增大了线粒体内膜对K+的可渗透性。破坏了跨膜的电位,但未破坏跨膜的pH梯度。解偶联剂,例如2,4-二硝基苯酚,它们能够引起H+的渗漏,不仅破坏了跨膜的电位,而且也破坏了跨膜的pH梯度。

11.解答:褐色脂肪线粒体的低P/O比表明存在着一种天然的解偶联机制,使电子传递与 ATP的合成相分离。电子沿呼吸链传递产生的电化学梯度不能都用来推动ATP的合成,大部分的能量以热的形式散失,用以维持体温。一种生物的热散失是与它的表面积成正比的。幼年动物表面积/体积比例大于成年动物。因此,每单位体重需要产生更多的热来维持它们的体温。褐色脂肪的这种低P/O比表明每产生1分子的ATP需要氧化更多的燃料分子。这种氧化释放出热。

第十三章 糖原代谢和糖的异生作用

内容提要

当动物食入丰富的含糖物质后,过量的葡萄糖便以糖原的形式储存起来。但是,当饥饿时,储存的糖原降解以满足机体组织对葡萄糖的需要。

糖原的降解涉及糖原磷酸化酶。该酶在不消耗ATP的情况下催化糖原的磷酸解,产生的葡萄糖-1-磷酸在磷酸葡萄糖变位酶催化下转变成葡萄糖-6-磷酸,后者或是进入糖酵解反应顺序或是在葡萄糖磷酸酶催化下生成葡萄糖,进入血液,为其他组织例如大脑提供葡萄糖。糖原分支点处的α-(1→6)糖苷键可被脱支酶水解,产生游离的葡萄糖。因此,糖原的完全降解是由糖原磷酸化酶和糖原脱支酶完成的,其产物是葡萄糖-1-磷酸和葡萄糖。

糖原的合成主要涉及糖原合酶,该酶以UDP-葡萄糖作位糖基的供体。分支酶是糖原产生分支不可缺少的酶。由于分支酶的存在,增多了糖原合酶和糖原磷酸化酶的作用点,可以加快糖原合成或降解的速度。糖原的合成也需要己糖激酶或葡萄糖激酶、磷酸葡萄糖变位酶以及尿苷二磷酸焦磷酸化酶的参与,这几种酶能将葡萄糖转变成糖原合酶的底物UDP-葡萄糖。

糖原的降解和合成的调节是由激素介导、交互进行的。有关的激酶和磷酸酶控制着可转换的酶(糖原磷酸化酶和糖原合酶)的活性。糖原磷酸化酶和糖原合酶两者的活性都可通过磷酸化和去磷酸化调节,前者磷酸化即有活性,后者磷酸化即无活性。当两者去磷酸化时,其活性发生相反的转化。

糖异生作用是由非糖前体合成葡萄糖的途径。有7个接近平衡的反应可在糖酵解和糖异生两途径中可逆发生。专一于糖异生的4种酶(丙酮酸羧化酶、磷酸烯醇式丙酮酸羧激酶、果糖-1,6-二磷酸酶和葡萄糖磷酸酶)使糖酵解的三个不可逆的反应转变成能量上有利于糖异生的反应。糖异生作用需要消耗ATP、GTP和NADH,因此,该途径是一种高度耗能的过程。

在动物中非糖前体都是三碳以上的化合物,乳酸、丙酮酸、生糖氨基酸以及柠檬酸循环的中间物都是糖异生作用的前体。二碳物不能用来净转变成糖。

糖异生和糖酵解的调节也是交互的。胰高血糖素、包括果糖-2,6-二磷酸在内的多种别构效应物以及底物的可用性都能调节糖异生的活性。果糖-2,6-二磷酸的水平受胰高血糖素的控制。

习题:

1.将患有某种肝病的人的糖原样品与Pi、正常的糖原磷酸化酶以及正常的脱支酶一起保温。在这一反应中,所形成的葡萄糖-1-磷酸与葡萄糖的比例是100︰1。该病人最有可能缺乏什么样的酶?

2.肌肉糖原磷酸化酶完全缺乏个体(McArdle's disease,麦卡德尔氏病)由于肌肉痉挛不能强力运动。这种病人的运动将导致细胞内ADP和Pi的增加比正常者高得多,而且在这些病人的肌肉中乳酸不会积累。请解释麦卡德尔氏病这种化学上的不平衡。

3.一分子的膳食葡萄糖完全氧化产生32分子的ATP。若该葡萄糖在它被分解代谢之前以糖原储存,其后又被降解用于氧化产生ATP。计算这一迂回路线所造成的能量损失份额。

4.糖原储积病(GSDs)由于专一性酶的缺乏影响糖原储存和血糖之间的平衡。请指出这类病人下述每种情况的糖原储存量和血糖量:①Von Gierke's((糖原储积病Ⅰ型,或称肝肾型糖原储积病,GSDⅠ)缺乏葡萄糖-6-磷酸酶;②Cori's(糖原储积病Ⅲ型)缺乏淀粉-1,6-葡萄糖苷酶(脱支酶)。

5.在哺乳动物中,生物需要葡萄糖的信号是分泌肾上腺素和胰高血糖素。这两种激素刺激蛋白激酶的活性。蛋白激酶的激活如何引起糖元降解的加强?又如何影响糖元的合成?

6.许多糖尿病人对胰岛素不作出应答,因为他们的细胞缺乏胰岛素受体。这将怎样影响①进食后即刻循环的葡萄糖的水平和②肌肉细胞中糖原合成的速度?

7.由丙酮酸经糖异生途径转变成葡萄糖的总反应可示如下:

2丙酮酸 + 4ATP + 2GTP + NADH + 2H+ + 4H2O →

葡萄糖 + 2 NAD+ + 4ADP +2GDP + 6Pi

-1

△G0'=﹣37.6 kJ·mol

但是,葡萄糖经酵解转变成丙酮酸只净产生2分子的ATP。因此,由丙酮酸合成葡萄糖是一种代价很高的过程。

①这种高昂代价的生理意义是什么? ②能量的消耗主要用在什么场合?

8.柠檬酸循环什么样的重要产物是由丙酮酸合成葡萄糖所需要的?

9.在进行紧张的运动时,肌糖元降解成丙酮酸,丙酮酸然后被还原为乳酸。在恢复时,乳酸被转移到肝脏,在那里它被氧化成丙酮酸,然后丙酮酸用来合成葡萄糖。丙酮酸的还原和乳酸的氧化都是由同一种酶乳酸脱氢酶催化。请解释为什么代谢物在该酶催化下的流动方向却是相反的?

10.多肽激素胰高血糖素的释放是由于胰脏对低血糖水平作出应答所致。在肝脏细胞中,胰高血糖素在调节糖酵解和糖异生两个相反途径的活性中起着主要的作用。这种调节作用是通过影响果糖-2,6-二磷酸的浓度实现的。如果胰高血糖素引起果糖-2,6-二磷酸的浓度的降低,将如何导致血糖水平的增高?

习题解答: