高分子物理课后习题答案(详解) 联系客服

发布时间 : 星期日 文章高分子物理课后习题答案(详解)更新完毕开始阅读4d30a937534de518964bcf84b9d528ea80c72f91

答:151.3℃

12.某聚合物试样,25℃时应力松弛到模量为1e5N/m^2需要10h。试计算-20℃时松弛到同一模量需要多少时间(已知该聚合物的Tg=-70℃)

答:

13.某聚合物的粘弹行为服从Kelvin模型,其中η值服从WLF方程,E值服从橡胶弹性统计理论。该聚合物的玻璃化温度为5℃,该温度下粘度为1e12Pa·s,有效网链密度为1e-4mol/cm^3。试写出30℃、1e6Pa应力作用下该聚合物的蠕变方程。

答:

第8章 聚合物的屈服和断裂

1.名词解释:

脆-韧转变点;细颈;剪切带;银纹;应力集中;疲劳。

脆-韧转变点:在一定应变速率下,作断裂应力和屈服应力分别与温度T的关系曲线,两条曲线的交点就是脆韧屈服转变点。

细颈:高分子材料试样条在拉伸实验中,试条某点的横截面突然快速下降的现象。 剪切带:只发生在局部带状区域内的剪切变形。

银纹:聚合物在张应力作用下,于材料某些薄弱地方出现应力集中而产生局部的塑性形变和取向,以至在材料表面或内部垂直于应力方向上出现长度为100μm、宽度为10μm左右、厚度约为1μm的微细凹槽。

应力集中:受力材料在形状、尺寸急剧变化的局部或内部缺陷(孔、裂缝等)的附近出现应力显着增大的现象。 疲劳:材料或构件在周期应力作用下断裂或失效的现象,是材料在实际使用中常见的破裂 形式。

2.画出非晶态和晶态聚合物拉伸时典型的应力-应变曲线,指出曲线上的特征点及相应的应力、应变名称。 3.讨论温度、应变速度、流体静态压力对上述应力-应变曲线的影响规律。 4.简述几种组合应力作用下材料的屈服判据,比较不同判据之间的差异。

答:(1)单参数屈服判据(Tresca判据和最大形变能理论),只受正应力和切应力;(2)双参数屈服判据(Coulomb判据或MC判据),受正应力、切应力和正压力。此外考虑流体静压力的改进的Tresca和Von Mises判据也适用。

5.何谓聚合物的强度为什么理论强度比实际强度高很多倍 6.简述聚合物增强、增韧的途径和机理。

答:聚合物增强途径:通过添加增强剂来形成复合材料;

机理:形成复合材料,可以传递应力,避免基体应力集中,提高力学强度。 聚合物的增韧途径:添加增塑剂。

机理:银纹机理、银纹-剪切带机理、三轴应力空化机理、刚性粒子增韧机理。 7.下列几种聚合物的抗冲击性能如何为什么(T

(1)聚苯乙烯;(2)聚苯醚;(3)聚碳酸酯;(4)ABS;(5)聚乙烯

答:(1)聚苯乙烯,因主链挂上体积庞大的侧基苯环,使之称为难以改变构象的刚性链,使得冲击性能不好,为典型的脆性聚合物。

(2)聚苯醚,因主链含有刚性的苯环,故为难以改变构象的刚性链,冲击性能不好。

(3)聚碳酸酯,由于主链中含酯基,在-120摄氏度可产生局部模式运动,称之为β转变。在T

(4)ABS,因ABS具有多相结构,支化的聚丁二烯相当于橡胶微粒分散在连续的塑料相中,相当于大量的应力集中物,当材料受到冲击时,它们可以引发大量的裂纹,从而能吸收大量的冲击能,所以冲击性能好。

(5)聚乙烯,由于聚乙烯链节结构极为规整和对称,体积又小,所以聚乙烯非常容易结晶,而且结晶度比较高。由于结晶限制了链段的运动,使之柔性不能表现出来,所以冲击性能不好。高压聚乙烯由于支化多,破坏了链的规整性,结晶度低些,冲击性能稍好些。

8.如何采用物理改性的方法制备下列材料简述其改性机理。

(1)抗冲击聚丙烯塑料;(2)高强度丁苯橡胶;(3)高强度尼龙纤维;(4)高强度、高耐折射性的聚酯薄膜;(5)高强度环氧树脂。

9.用低密度聚乙烯改性尼龙的研究和应用报道很多。该种共混体系相容性很差,用什么方法可以改善两者的相容性用什么实验手段可以说明相容性确实显着提高了

10.现有一块有机玻璃(PMMA)板,内有长度为10mm的中心裂纹,该板受到一个均匀的拉伸应力δ=450e6N/m^2的作用。已知材料的临界应力强度因子KIC=m^2·m^1/2,安全系数n=,问板材结构是否安全

第9章 聚合物的流变性

1.什么是假塑性流体绝大多数聚合物熔体和浓溶液在通常条件下为什么均呈现假塑性流体的性质试用缠结理论加以解释。

答:(1)流动指数n<1的流体称为假塑性流体; (2)略

2.聚合物的粘性流动有何特点为什么 3.为什么聚合物的粘流活化能与分子量无关

答:根据自由体积理论,高分子的流动不是简单的整个分子的迁移,而是通过链段的相继跃迁来实现的。形象的说,

这种流动的类似于蚯蚓的蠕动。因而其流动活化能与分子的长短无关。,由实验结果可知当

碳链不长时,随碳数的增加而增加,但当碳数大于30时,不再增大,因此聚合物超过一定数值后,与相

对分子质量无关。

4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。

答:低切变速率下,当时,略依赖于聚合物化学结构和温度,当时,与聚合物化学结构,分

子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。

聚合物熔体非牛顿流动时的切变速率随分子量加大向低切变速率移动,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。

5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答:a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链越刚硬,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏性的;当温度处于一定范围即Tg

b.柔性链高分子表观粘度随切变速率增加而明显下降,刚性链高分子表观粘度也随且变速率增加而下降,但降幅较小,因为切变速率增加,柔性链易改变构象,即通过链段运动破坏原有缠结,降低流动阻力,刚性链链段较长,构象改变较困难,随切变阻力增加,阻力变化不大。 6.解释下列名词、概念: (1)牛顿流体和非牛顿流体;

牛顿流体:流动行为符合牛顿流动定律的流体; 非牛顿流体:流动行为不符合牛顿流动定律的流体。 (2)切粘度和拉伸粘度;

切粘度:等于单位速度梯度时单位面积上所受到的切应力,其值放映了液体分子间由于相互作用而产生的流动阻力即内摩擦力的大小,单位为帕秒(Pas)。

拉伸粘度:等于单位速度梯度时单位面积上所受到的拉伸应力。 (3)真实粘度和表观粘度;

真实粘度:单位速度梯度时单位面积上所受到的切应力。

表观粘度:在粘性流动中,流体具有剪切速率依赖性时的剪切应力与剪切速率之比值。 (4)非牛顿指数和稠度系数;

非牛顿指数:n= ,对切变速率非牛顿的校正。

稠度系数:描述非牛顿流体流动行为可用下述幂律方程:(5)不稳定流动与熔体破裂。

,其中K为稠度系数。

不稳定流动与熔体破裂:聚合物熔体在挤出时,如果切应力超过一极限值时,熔体往往会出现不稳定流动,挤出物外表不再是光滑的,最后导致不规则的挤出物断裂,称为熔体破裂。 7.为什么涤纶采用熔融纺丝方法,而腈纶却用湿法纺丝

答:由于聚丙烯腈的熔点很高(318℃),分解温度(220℃)低于熔点,所以不能用熔融纺丝。由于聚对苯二甲酸乙二酯的熔点为260~270℃,低于分解温度(约为350℃),可用熔融纺丝。

8.某一聚苯乙烯试样,已知160℃时粘度为1e3Pa·s,试估算Tg(100℃)时及120℃时的粘度。

答:Tg(100℃)时为Pa·s,120℃时为Pa·s。

9.一种聚合物在加工中劣化,其重均分子量从1e6下降到8e5.问加工前后的熔融粘度之比是多少 答:

10.用毛细管流变仪挤出顺丁橡胶试样,不同柱塞速度ν条件下,得到载荷下的数值如下: V(mm/min)262060200 F(mm/min)333246065831

已知柱塞直径dp=0.9525cm,毛细管直径D=0.127cm,毛细管长径比L/D=4,忽略入口校正,试作出熔体的τw-ηa-曲线。

曲线和