线性代数之行列式的性质及计算 联系客服

发布时间 : 星期一 文章线性代数之行列式的性质及计算更新完毕开始阅读5008343df705cc175427099e

2?512a1?1a1?2La1?n(1)D??37?14a2?1a2?2La2?n5?927(2)Dn?MMMM(n?2)

4?612an?1an?2Lan?na?bb?cc?aabc2.证明a1?b1b1?c1c1?a1?2a1b1c1 a2?b2b2?c2c2?a2a2b2c23. 证明

?abacaea2(a?1)2(a?2)2(a?3)2(1)bd?cdde?4abcdef(2)b2(b?1)2(b?2)2(b?3)2bfcf?efc2(c?1)2(c?2)2(c?3)2?0d2(d?1)2(d?2)2(d?3)2abcd4.计算行列式D?aa?ba?b?ca?b?c?da2a?b3a?2b?c4a?3b?2c?d

a3a?b6a?3b?c10a?6b?3c?d答案

1?5221?5221?522c31.(1)D1??c3r?r,r?2r1r?r4??17?3421?02?1623132?957 r?4?r10113?0102?161?6420?1200?1201?5221?522r3??2r20113r4?r30113r4?r200?30?00?30?1?1?(?3)?3??9

00330003a1?11Ln?1cc(2)Di??1a2?11Ln?1ni?2,3,L???a1?a2,n?2,nMMMM0,n?2 ?an?11Ln?1a?bb?cc?aca?bc?ac?a2.左边=a1?b1b1?c1c2?c11?a1?a1?b1c1?a1c1?a1 a2?b2b2?c2c2?a2a2?b2c2?a2c2?a2ca?bc?a2ca?bc?ac3?c?2a1?b1c1?a12c1?2a1?b1c1?a1c1 a2?b2c2?a22c2a2?b2c2?a2c2 5

c2?c3a?ba2?b2?a?a1?a2cc2?2a1?b1c1?2b1b2c1?c2b?a?a1?a2cc2c1?2a1a2c1?c2abb1b2cc1. c23. 证

?11?1111?1(1)左边?abcdef11r2?r1r3?r1?11102200?abcdef0r2?r3?111020?4abcdef. 02??abcdef0(2)左边?ci?c1a2b2c2d2i?2,3,4b2?2c?14c?46c?9c4?3c2c2d22d?14d?46d?9c3?2c22a?14a?46a?92b?14b?46b?9a22a?1262b?126?0?右边

2c?1262d?1264. 解: 从第4行开始,后行减前行得,

abcd0aa?ba?b?cD?0a2a?b3a?2b?c0aa?ba?b?cr4?r30aa?ba?b?c ?00a2a?ba2a?b?00r3?r20a3a?b6a?3b?c00a3a?b000ar4?r3abcdabcd?a4

§2.2 行列式按行(列)展开

对于三阶行列式,容易验证:

a11a31a12a32a13a21a22a23?a11a32a33a22a23a33?a12a21a23a31a33?a13a21a23a31a33

可见一个三阶行列式可以转化成三个二阶行列式的计算.

问题:一个n阶行列式是否可以转化为若干个n-1阶行列式来计算?

一、余子式与代数余子式

a11定义:在n阶行列式D?a12La1na2n中,划去元素aij所在的第i行和第j列,余下Lanna21a22LLLLan1an2L的元素按原来的顺序构成的n?1阶行列式,称为元素aij的余子式,记作Mij;而

6

Aij?(?1)i?jMij称为元素aij的代数余子式.

a11a12a13例如 三阶行列式 a21a22a31a32a23中元素aij的余子式为M23?a31a32a11a12a32

元素a23的代数余子式为A23?(?1)2?3M23??M23

1?110?2?51四阶行列式中元素x的代数余子式为A32?(?1)3?20?51?5

1x23001030110?11

二、行列式按行(列)展开

a11定理 n阶行列式D?a12La1na2n等于它的任意一行(列)的各元素与其对应的Lanna21a22LLLLan1an2L代数余子式的乘积之和,即

D?ai1Ai1?ai2Ai2?LainAin(i?1,2,L,n)或D?a1jA1j?a2jA2j?LanjAnj(j?1,2,L,n)证 (1)元素a11位于第一行、第一列,而该行其余元素均为零;

a110L0a2n??(?1)?(j1j2LLj1?1annjn)a21a22L此时 D?LLLan1an2La1j1a2j2Lanjn??(?1)?(j1j2Lj1?1jn)a1j1a2j2Lanjn

?a11(j2j3Ljn)?(?1)?(j2Ljn)a2j2Lanjn?a11M11

而A11?(?1)1?1M11?M11,故D?a11A11;

a11La1jLa1nMMMMM0 (2)D?0LaijLMMMMMan1LanjLann将D中第i行依次与前i?1行对调,调换i?1次后位于第一行;

7

将D中第j列依次与前j?1列对调,调换j?1次后位于第一列; 经(i?1)?(j?1)?i?j?2次对调后,aij就位于第一行、第一列,即

D?(?1)i?j?2aijMij?(?1)i?jaijMij?aijAij.

(3) 一般地

a11a12LLD?ai1?0?L?00?ai2?L?0LLan1an2

LLLLLa1nL0?L?0?ain

Lanna1na11LL0?L?0Lanna12LLL0La1nLain Lanna11L?ai1a12LLL0La1na11LL0?0Lanna12LLLai2LLLLan1an2LLLLan1an2LLLLan1an2L?ai1Ai1?ai2Ai2?LainAin

同理有D?a1jA1j?a2jA2j?LanjAnj.

a11推论 n阶行列式D?a12La1na2n的任意一行(列)的各元素与另一行(列)对Lanna21a22LLLLan1an2L应的代数余子式的乘积之和为零,即

ai1As1?ai2As2?LainAsn?0(i?s)或a1jA1t?a2jA2t?LanjAnt?0(j?t)证 考虑辅助行列式

D1?a11La21La1jLa2jLa1jLa2jLa1na2nMMMMMMM an1LanjLanjLa2ni列j列按第t列展?a1jA1t?a2jA2t?LanjAnt(j?t).该行列式中有两列对应元素相等.而D1?0,所以

8