武汉理工大学材料科学基础课后习题和答案 联系客服

发布时间 : 星期四 文章武汉理工大学材料科学基础课后习题和答案更新完毕开始阅读513291f00812a21614791711cc7931b764ce7b74

烧结末期:(1) 进入烧结末期,气孔封闭,相互孤立,理想情况为四个颗粒包围,近似球状。 (2) 晶粒明显长大,只有扩散机理是重要的,质点通过晶界扩散和体积扩散,进入晶界间近似球状的气孔中。

(3) 收缩率达90~100%, 密度达理论值的95% 以上。

3.解: a,d能使烧结体强度增大,而不会产生肧体宏观上的收缩。应为这两种物质传递仅涉及肧体表面形状的变化,而并没有涉及到肧体内部气孔体积的变化。这样,陪体表面颗粒间接触面积增大,粘附力增加,从而使烧结体强度增大,但不产生肧体宏观上的收缩。 4.解:粉料立方体1mm=10cm

1cm3压块中有1/(10)=10个颗粒

最初表面能=6*(10)*1000erg/cm*10个/cm=6*10erg/cm 最后晶界能=1/2*6 *(10)*550erg/cm*10个/cm=*10 erg/cm 推动力D=6*10erg/*10erg/cm =*10 erg/cm 5.解: 推动力来源 的能量 推动力大小 在陶瓷系统中重影响不大 要性 6.解:延长烧结时间一般都为不同程度地促使烧结完成,但对粘性流动机理的烧结较为明显,而对体积扩散和表面扩散机理影响较小。对体积扩散和表面扩散,低温下以表面扩散为主,高温下以体积扩散为主,而表面扩散并不改变为肧体的致密度,因此,可适当延长高温烧结时间。另外,在烧结后期,不合理的延长烧结时间,有时会加剧二次再结晶作用,反而得不到充分致密的制品。 7.解:△P=g(1/r1+1/r2) △P=大气压 g=280达因/厘米 r1=5μm 求r2 8.解:略

关键 尽量避免 小 ~1cal/g 较大 很大 初次再结晶 基质塑性变形而储存于基质中晶界过剩的界面能 晶粒长大 二次再结晶 7

7

3

7

3

-4

2

3

12

3

7

3

-4

2

3

12

3

7

3

-4

3

12

-4

9.解:线收缩率:

1200℃,对NiO和Cr2O3粉末,其

则可求出K1473,同理,可求出 K1673,代入上式,即可求出 式中g=600erg/cm,ó=? T=1473K,1673K,r=μm

10.解:(1) 晶粒的大小取决于起始晶粒的大小,烧结温度和烧结时间 (2) 防止二次再结晶引起的晶粒异常长大

11.解:二次再结晶发生后,由于个别晶粒异常长大,气孔进入晶粒内部,成为孤立闭气孔,不易排除,使烧结速率降低甚至停止,肧体不再致密;加之大晶粒的晶界上有应力存在,使其内部易出现隐裂纹,继续烧结时肧体易膨胀而开裂,使烧结体的机械,电学性能下降。

12.解:常规烧结过程主要是基于颗粒间的接触与键合,以及在表面张力推动下物质的传递过程。其总体的推动力由系统表面能提供。这就决定了其致密化是有一定限度的。常规条件下坯体密度很难达到理论密度值。对于特种烧结,它是为了适应特种材料对性能的要求而产生的。这些烧结 过程除了常规烧结中由系统表面能提供的驱动力之外,还由特殊工艺条件增加了系统烧结的驱动力,因此提高了坯体的烧结速率,大大增加了坯体的致密化程度。例如热压烧结,它是加压成型与加压烧结同时进行的一种烧结工艺。由于同时加温加压,有利于粉末颗粒的接触、扩散和流动等传质过程,降低了烧结温度和烧结时间,抑制了晶粒的长大。其容易获得接近理论密度、气孔率接近零的烧结体。 13.解:(1) 对 FeO,易形成负离子过剩型非化学计量化合物,其缺陷反应式为:

另外,在MgO的烧结中是正离子起扩散起控制作用的烧结过程,因而氧气氛和氧分压较高是有利的。

(2) 烧结氧化铝Al2O3时,由于氢原子半径很小,扩散系数较大,易于扩散而有利于闭气孔的清除;而原子半径大的氮则由于其扩散系数较小难于扩散而阻碍烧结。 14.解:由D0=μm 和t=30min,D=3D0=μm可得: D-D0=kt K=30μm/min D=1μm,1-=kt=30t ∴ t=

22

2

2

2

2

第十一章 腐蚀与防护

1. 名词解释及符号意义

全面腐蚀 局部腐蚀 点腐蚀 晶间腐蚀 应力腐蚀 腐蚀疲劳 涡流腐蚀 缝隙腐蚀 KISCC da/dt 2. 以不锈钢在充气的NaCl溶液中孔腐蚀为例,简述小孔腐蚀的机理。 3. 为提高18Cr-9Ni不锈钢的抗点蚀性能,可在钢中加入哪些元素?

4. 应力腐蚀裂纹扩展速率da/dt与KI值之间的关系如图 所示,试指出曲线上的两个端点各代表材料的什么特征值?并根据此图说明裂纹扩展速率da/dt与KI值的关系。 5. 影响晶间腐蚀的因素有哪些?

6. 简述应力腐蚀的机理及减少应力腐蚀的措施。 7. 试述硅酸盐材料的腐蚀机理及影响腐蚀的因素。 8. 玻璃的腐蚀有哪几种形式?简要说明之。 9. 混凝土的腐蚀有哪几种形式?简要说明之。

10.以Al2O3/SiC复合材料为例说明陶瓷基复合材料的氧化行为。 11.什么是高分子材料的腐蚀?有何主要表现?

12.何为高分子材料的物理老化?其特点是什么?物理老化对性能有何影响?

答案

1 名词解释及符号意义

全面腐蚀 局部腐蚀 点腐蚀 晶间腐蚀 应力腐蚀 腐蚀疲劳 涡流腐蚀 缝隙腐蚀 KISCC da/dt 全面腐蚀:是常见的一种腐蚀,是指整个金属表面均发生腐蚀,它可以是均匀的也可以是不均匀的。全面腐蚀一般属于微观电池腐蚀。

局部腐蚀:腐蚀作用集中在某一定的区域内,而金属的其余部分几乎没有发生腐蚀。主要有点腐蚀(孔腐蚀) 、缝隙腐蚀、晶间腐蚀、选择腐蚀,应力腐蚀、腐蚀疲劳、湍流腐蚀等。

点腐蚀:金属的大部分表面不发生腐蚀或腐蚀很轻微,但在局部地方出现腐蚀小孔并向深处发展的一种腐蚀破坏形式。

晶间腐蚀:是金属材料在特定的腐蚀介质中沿着材料的晶界发生的一种局部腐蚀。这种腐蚀是在金属(合金) 表面无任何变化的情况下,使晶粒间失去结合力,金属强度完全丧失,导致设备突发性破坏。

应力腐蚀:(英文缩写SCC,stress corrosion crack) 是指金属材料在特定腐蚀介质和拉应力

共同作用下发生的脆性断裂。

腐蚀疲劳:在腐蚀介质和交变应力共同作用下而引起的材料或构件的破坏。 涡流腐蚀:腐蚀性流体与金属间相互运动引起的金属加速破坏。

缝隙腐蚀:浸在腐蚀介质中的构筑物,由于金属与金属之间或金属与非金属之间形成缝隙,而缝隙中又可进入并存留住腐蚀介质,从而使缝隙内部产生加速腐蚀的现象。

KISCC : 一般认为当拉伸应力低于某一个临界值时,不再发生断裂破坏,这个临界应力称应力腐蚀开裂门槛值,用KISCC或临界应力óth 表示。

da/dt:表示单位时间内裂纹的扩展量叫应力腐蚀裂纹扩展速率。 2 以不锈钢在充气的NaCl溶液中孔腐蚀为例,简述小孔腐蚀的机理。

表面带有氧化膜的金属与含有活性氯离子的介质接触时,活性氯离子首选吸附在金属表面氧化膜的某些部位。当金属的电位达到孔蚀电位时,在氧化膜或钝化膜的薄弱点,如在晶界、位错露头、外来原子在点阵中的夹杂和氧化膜的应力裂纹处,或者由于竞争吸附的结果使金属表面的吸附氧被氯离子取代,或由于电场强度使氯离子获得足够能量,使其穿过氧化膜的薄弱部分,从而使氧化膜受到局部破坏并使金属发生局部的阳极溶解,于是开始形成蚀孔。在蚀孔开始形成之前有一段很长的孕育期,有的可长达几个月甚至几年,而一旦蚀孔形成之后,它的生长却是一个自催化过程,以不断增长的速度穿透金属。

3 为提高18Cr-9Ni不锈钢的抗点蚀性能,可在钢中加入哪些元素? 增加铬和镍含量,加入钼等。

4 应力腐蚀裂纹扩展速率da/dt与KI值之间的关系如图所示,试指出曲线上的两个端点各代表材料的什么特征值?并根据此图说明裂纹扩展速率da/dt与KI值的关系

曲线与横坐标的交点代表到达临界点,既da/dt马上就要大于零,裂纹即将产生。 曲线的最高点代表 裂纹深度已接近临界尺寸,马上就要断裂。

(1) 区域I 当KI稍大于KISCC时,裂纹经过一段孕育后突然加速发展,即在I区内,裂纹生长速率对KI值较敏感。

(2) 区域II da/dt与KI无关,通常说的裂纹扩展速率就是指该区速率,因为它主要由电化学过程控制,较强烈地依赖于溶液的p值,粘度和温度;

(3) 区域III 失稳断裂区,裂纹深度已接近临界尺寸acr ,当超过这个值时,应力强度因子KI达到KIC时,裂纹生长速率迅速增加直至发生失稳断裂。 5 影响晶间腐蚀的因素有哪些? 影响晶间腐蚀的因素主要有: