江苏高中物理基本知识点总结 联系客服

发布时间 : 星期一 文章江苏高中物理基本知识点总结更新完毕开始阅读51af3e24793e0912a21614791711cc7931b77897

(3)纯力学问题中只有重力、弹力、摩擦力,电磁感应中多一个安培力,安培力随速度变化,部分弹力及相应的摩擦力也随之而变,导致物体的运动状态发生变化,在分析问题时要注意上述联系.

5.电磁感应与动量、能量的综合

方法:

(2)从受力角度着手,运用牛顿运动定律及运动学公式

变化过程是:导线受力做切割磁力线运动,从而产生感应电动势,继而产生感应电流,这样就出现与外力方向相反的安培力作用,于是导线做加速度越来越小的变加速直线运动,运动过程中速度v变,电动势BLv也变,安培力BIL亦变,当安培力与外力大小相等时,加速度为零,此时物体就达到最大速度.

(2)从动量角度着手,运用动量定理或动量守恒定律

①应用动量定理可以由动量变化来求解变力的冲量,如在导体棒做非匀变速运动的问题中,应用动量定理可以解决牛顿运动定律不易解答的问题.

②在相互平行的水平轨道间的双棒做切割磁感线运动时,由于这两根导体棒所受的安培力等大反向,合外力为零,若不受其他外力,两导体棒的总动量守恒.解决此类问题往往要应用动量守恒定律.

(3)从能量转化和守恒着手,运用动能定律或能量守恒定律

①基本思路:受力分析→弄清哪些力做功,正功还是负功→明确有哪些形式的能量参与转化,哪增哪减→由动能定理或能量守恒定律列方程求解.

?电能??????内能(焦耳热) ②能量转化特点:其它能(如:机械能)??????安培力做负功电流做功6.电磁感应与电路综合

方法:在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路相当于电源.解决电磁感应与电路综合问题的基本思路是:

(1)明确哪部分相当于电源,由法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向. (2)画出等效电路图.

(3)运用闭合电路欧姆定律.串并联电路的性质求解未知物理量.

功能关系:电磁感应现象的实质是不同形式能量的转化过程。因此从功和能的观点入手,

分析清楚电磁感应过程中能量转化关系,往往是解决电磁感应问题的关健,也是处理此类题目的捷径之一。

棒平动切割B时达到的最大速度问题;及电路中产生的热量Q;通过导体棒的电量问题 ①vm?F合外RBL22 (F合外为导体棒在匀速运动时所受到的合外力)。 求最大速度问题,尽管达最大速度前运动为变速运动,感应电流(电动势)都在变化,但达最大速度之后,感应电流及安培力均恒定,计算热量运用能量观点处理,运算过程得以简捷。 12mvm (WF 为外力所做的功; Wf-为克服外界阻力做的功); 2???n??③流过电路的感应电量q?I?t???t?n ??t?RR?tR②Q=WF -Wf-. 【例】长L1宽L2的矩形线圈电阻为R,处于磁感应强度为B的匀强磁场边缘,线圈与磁感线垂直。将线圈以向右的速度v匀速拉出磁场,求: ① 拉力F大小; L② 拉力的功率P; v F LB ③ 拉力做的功W; ④ 线圈中产生的电热Q; ⑤通过线圈某一截面的电荷量q。 B2L2VE2E?BL2V,I?,F?BIL2,?F??V;RR22BL2LV1P?FV?V2;W?FL1??V;R解析: E??Q?W?V;q?I?t?t?与v无关。RR特别要注意电热Q和电荷q的区别,其中 q与速度无关!

交变电流 电磁场

交变电流(1)中性面线圈平面与磁感线垂直的位置,或瞬时感应电动势为零的位置。

中性面的特点:a.线圈处于中性面位置时,穿过线圈的磁通量Φ最大,但

产生:矩形线圈在匀强磁场中绕与磁场垂直的轴匀速转动。

?Φ=0; ?t变化规律e=NBSωsinωt=Emsinωt;i=Imsinωt;(中性面位置开始计时),最大值Em=NBSω ...

四值:①瞬时值②最大值③有效值电流的热效应规定的;对于正弦式交流U=22不对称方波:I?I1?I2 不对称的正弦波 I?2Um2=0.707Um ④平均值

2I2m1?Im2 2求某段时间内通过导线横截面的电荷量Q=IΔt=εΔt/R=ΔΦ/R

我国用的交变电流,周期是0.02s,频率是50Hz,电流方向每秒改变100次。 瞬时表达式:e=e=2202sin100πt=311sin100πt=311sin314t

线圈作用是“通直流,阻交流;通低频,阻高频”. 电容的作用是“通交流、隔直流;通高频、阻低频”.

变压器两个基本公式:① U1?n1 ②P入=P出,输入功率由输出功率决定, ...........

U2n2远距离输电:一定要画出远距离输电的示意图来,

包括发电机、两台变压器、输电线等效电阻和负载电阻。并按照规范在图中标出相应的物理量符号。一般设两个变压器的初、次级线圈的匝数分别为、n1、n1/ n2、n2/,相应的电压、电流、功率也应该采用相应的符号来表示。 功率之间的关系是:P1=P1/,P2=P2/,P1/=Pr=P2。 电压之间的关系是:

U1n1U2n2 ?,?,U1??Ur?U2。

?U2?n2?U1?n1?I2n2?I1n1,?,I1??Ir?I2.求输电线上的电流往往是这类问题的突破口。电流之间的关系是:? ?n2I1?n1I2输电线上的功率损失和电压损失也是需要特别注意的。

U1?2分析和计算时都必须用Pr?Ir,Ur?Irr,而不能用Pr?。

r2rP1?L1, 特别重要的是要会分析输电线上的功率损失Pr????????U???2SSU1?1?2解决变压器问题的常用方法(解题思路)

①电压思路.变压器原、副线圈的电压之比为U1/U2=n1/n2;当变压器有多个副绕组时U1/n1=U2/n2=U3/n3=…… ②功率思路.理想变压器的输入、输出功率为P入=P出,即P1=P2;当变压器有多个副绕组时P1=P2+P3+…… ③电流思路.由I=P/U知,对只有一个副绕组的变压器有I1/I2=n2/n1;当变压器有多个副绕组时n1I1=n2I2+n3I3+…… ④(变压器动态问题)制约思路.

(1)电压制约:当变压器原、副线圈的匝数比(n1/n2)一定时,输出电压U2由输入电压决定,即U2=n2U1/n1,可简述为“原制约副”.

(2)电流制约:当变压器原、副线圈的匝数比(n1/n2)一定,且输入电压U1确定时,原线圈中的电流I1由副线圈中的输出电流I2决定,即I1=n2I2/n1,可简述为“副制约原”.

(3)负载制约:①变压器副线圈中的功率P2由用户负载决定,P2=P负1+P负2+…;

②变压器副线圈中的电流I2由用户负载及电压U2确定,I2=P2/U2; ③总功率P总=P线+P2.

动态分析问题的思路程序可表示为:

UUn21?1I?2RU1U2n2负载??????U???????I22决定决定PP1?P2(I1U1?I2U2)1?I1U1??????????I??????P1

1决定决定”型变压器时有

⑤原理思路.变压器原线圈中磁通量发生变化,铁芯中ΔΦ/Δt相等;当遇到“

ΔΦ1/Δt=ΔΦ2/Δt+ΔΦ3/Δt,适用于交流电或电压(电流)变化的直流电,但不适用于恒定电流

光学:美国迈克耳逊用旋转棱镜法较准确的测出了光速,

反射定律(物像关于镜面对称);由偏折程度直接判断各色光的

o?siniCsin90折射定律n????空

sin?v介sinC?介n

光学中的一个现象一串结论

色散现象 红 黄 紫 n v λ(波动性) 小 大 大 (明显) 大 小 小 (不明显) 衍射 容易 难 C临 干涉间距 γ (粒子性) E光子 小 (不明显) 大 (明显) 小 大 光电效应 难 易 小 大 大 小 结论:(1)折射率n、; (2)全反射的临界角C; (3)同一介质中的传播速率v; (4)在平行玻璃块的侧移△x (5)光的频率γ,频率大,粒子性明显.; (6)光子的能量E=hγ则光子的能量越大。越容易产生光电效应现象 (7)在真空中光的波长λ,波长大波动性显著; (8)在相同的情况下,双缝干涉条纹间距x越来越窄 (9)在相同的情况下,衍射现象越来越不明显 全反射的条件:光密到光疏;入射角等于或大于临界角

全反射现象:让一束光沿半圆形玻璃砖的半径射到直边上,可以看到一部分光线从玻璃直边上折射到空气

中,一部分光线反射回玻璃砖内.逐渐增大光的入射角,将会看到折射光线远离法线,且越来越弱.反射光越来越强,当入射角增大到某一角度C临时,折射角达到900,即是折射光线完全消失,只剩下反射回玻璃中的光线.这种现象叫全反射现象.折射角变为900时的入射角叫临界角

应用:光纤通信(玻璃sio2) 内窥镜 海市蜃楼 沙膜蜃景 炎热夏天柏油路面上的蜃景 水中或玻璃中的气泡看起来很亮. 理解:同种材料对不同色光折射率不同;同一色光在不同介质中折射率不同。 几个结论:1紧靠点光源向对面墙平抛的物体,在对面墙上的影子的运动是匀速运动。 2、两相互正交的平面镜构成反射器,任何方向射入某一镜面的光线经两次反射后一定与原入射方向平行反向。 3、光线由真空射入折射率为n的介质时,如果入射角θ满足tgθ=n,则反射光线和折射光线一定垂直。 4、由水面上看水下光源时,视深d'?d/n;若由水面下看水上物体时,视高d'?nd。

5、光线以入射角i斜射入一块两面平行的折射率为n、厚度为h的玻璃砖后,出射光线仍与入射光线平行,