地铁盾构建设十大主要施工风险 联系客服

发布时间 : 星期五 文章地铁盾构建设十大主要施工风险更新完毕开始阅读52a78da181c758f5f61f67bb

(1) 穿越前对对管理土压进行正确估计,并必须通过模拟推进试验的

方法最终确定正面土压及其在穿越工程中的调整方案,将管理土压维持在实际静止土压力附近。

(2) 确认盾构设备能力达到的压力波动范围及其影响,分析判断是否

满足控制要求。

(3) 在一级以上监控中应详细分析被保护对象荷载及其刚度可能对

盾构正面土压力的影响。

7)

盾构姿态的控制

盾构姿态控制应做到勤纠患纠,保持轴线平差、高差在最小范围,以减少地层损失及对地层的扰动。在一级监控条件下,应尽快预先调整好盾构姿态,以直线平推姿态进入监控保护区,并始终维持稳定,尽量做好无纠偏动作。即使纠偏也应在多环内分小步均匀进行,在水平和垂直方向的单次纠偏量宜小于2'0\。

8)

施工、监测队伍资质控制

施工队伍必须具备与监控等级条件相适应的施工资质,监测队伍必须具备与监控要求相适应的测量等级资质及监控设备条件。现场须配备足够的人力与设备,确保监控数据的准确与及时送达。

9)

应急预案制订与准备

总承包单位应统一协调,与设计、盾构、注浆、监测等施工单位和材料供应商共同制定具有针对性的应急预案。在工程施工的全过程中,现场应按预定计划备有应急所需的抢险设备和物质,并在方便、快速取用的部位放置。其中高质量盾尾油脂、聚氨酯、水玻璃堵漏用水泥等为盾构施工必备应急物质。要特别注意台风、强暴雨天气下的雨水、河水倒灌及运输中断等风险,及时收集局部天气预报信息,提前备足防洪排涝设备和物质。

高风险项目的控制要求

一、 盾构进出洞风险控制

盾构进出洞应视为高风险工序,对其中各个环节应严格把关,做好洞口地基加固风险控制、洞口土体流失风险控制、盾构基座变形风险控制、盾构后靠变形风险控制、盾构轴线偏离及盾构姿态突变风险控制等五大风险点控制。

5

1、洞口地基加固风险

根据地质和环境特点,合理选择盾构进出洞地基加固方法,并在工作井结构完成后,严格按相应的规范要求进行地基地基加固。洞口地基加固要求采用合理的顺序及施工参数,严防加固的挤压效应损坏工作井结构及临近建筑。

原则上要求盾构进出洞口的止水加固体部分应在工作井完成后、盾构进出洞前进行施工。若受条件限制而需在工作井基坑开挖前进行洞口地基加固的,则加固体与工作井井壁间的50cm间隙须在井内结构完成后进行高压旋喷密实填充,并确保龄期。

盾构进出洞之前,应对洞口加固体进行斜孔钻芯取样检测,进一步确认洞口加固体范围、强度、水密性与均匀性达到要求。 2、洞口土体流失风险控制

1)洞圈密封橡胶带须安装准确牢固;

2)盾构推进中注意观察、防止刀盘周边损伤橡胶带; 3)洞圈扇形钢板要及时调整,提高密封圈的密封性; 4)盾构进洞时及时调整密封钢板位置,并及时将洞口封好;

5)盾构进洞时正面压力及时下调,防止顶坏洞口装置以致土体坍入井内; 6)洞圈止水达到要求:在承压水或透水砂性地层中,洞圈止水装置应设2道以上,且安装牢固并足以抵抗地层最高水压和注浆压力;双圆盾构隧道还应加强对海鸥块凹槽部位洞圈的防水措施;洞圈中应预留注浆管;

7)在盾尾脱离加固区以及切口进入洞圈前应采用高质量油脂及时填满盾尾钢丝刷直至少量挤出为止,一般高质量油脂注入量不得少于20-30kg/环; 8)在承压水或饱和含水砂性地层中,洞圈止水装置在盾构进出洞后原则上不应拆除,而应采用外包钢筋混凝土结构措施予以永久保留; 9)备好注浆堵漏及承压水井点的施工条件,以应洞口涌水时急用。 3、盾构基座变形风险控制

1)检验盾构基座框架结构的强度和刚度,防止基座变形而导致在盾构出洞时盾构姿态偏斜而影响洞圈止水效果,在盾构进洞时拉坏管片而发生漏水; 2)盾构基座要足以抵抗盾构出洞时过加固区的反向推力;

3)盾构基座的地面与井底面之间垫平垫实,确保接触面积满足基座安放稳定的

6

要求;

4)对多次使用的盾构基座及时保养维修,确保其应有的强度和刚度。 4、盾构后靠变形风险控制

1) 效验盾构后靠支撑体系中的各个构件和节点的强度和刚度,尤应注意检验受压构件的稳定性,防止后靠支撑体系失稳而引起盾构推进偏斜,损坏管片及洞圈密封装置

2) 尽快安放上部的后靠支撑构件,完善整个后靠支撑体系,以便开启盾构上部千斤顶,实行千斤顶合理编组,使后靠支撑受力均匀;

3) 用混凝土或水泥砂浆填充各构件连接处缝隙时,要填充密实,并养护至足够强度;

4) 第一环负环应确保基面平整正圆。负环管片必须采用经验收合格的管片,确保负环拼装的高质量。

5、盾构轴线偏离及盾构姿态突变风险控制

1)盾构出洞前检查后靠支撑体系,确保其牢固;出洞时正确选用千斤顶编组,防止盾构上浮;

2)盾构出洞时,井内范围的管片拼装应尽量利用盾壳与管片间隙作隧道轴线纠偏,改善隧道轴线;

3)盾构进洞前一段管片环上半圈用槽钢相互连接,增加隧道刚度,及时复紧管片拼装螺栓,提高抗变形能力;

4)盾构进洞前调整整个盾构姿态,使盾构底标高略高于基座标高,但盾构下落到基座的距离不超过盾尾与管片的建筑间隙。

二、盾构穿越硬粘土与承压水砂性土交接地层的风险控制

1、按4.4.1要求对盾尾密封进行专项检查,必须确保其密封性能指标达到抵抗盾构底部最最高水土压力及注浆压力的要求;

2、盾构机应具备加泥浆/泡沫功能,螺旋出土器应设有防喷装置。膨润土泥浆或泡沫剂、聚氨酯、海绵板、双快水泥等物质及设备应预备充足,并必须能够在规定时限内达到抢险位置;

3、加大盾构断面内砂性土对应部位千斤顶压力,以平衡承压水压力,并往泥舱中注入润滑泥浆(膨润土、碱水、泥浆等),采用搅拌棒使粘土块与砂土混合,

7

防止流沙。必要是适当伸出仿形刀超挖硬粘土部分并相应减少出土量以减少土体损失,避免盾构刀盘及顶进系统超负荷运转和姿态失控,而导致盾构偏转、刀盘卡死及盾构突沉等风险;

4、按4.5要求确保同步注浆施工质量,砂性地层中盾尾空隙最小填充率为180%; 5、为预防盾构及后方隧道突沉,应分别对盾构姿态及盾构后方15环管片隧道变形进行密切观察和跟踪检测,及时反馈调整盾构姿态、推进速度以及进行必要的补充注浆;

6、一旦发现盾尾有泥沙漏涌迹象,应立即停止推进并进行封堵。一般可采用在管片外弧面敷设满足硬度要求的海绵板进行封堵,必要时可进行壁后补浆,万分紧急时采用聚氨酯进行封堵。

三、盾构近距离穿越运营地铁隧道的风险控制

1、盾构上方或下方穿越运营的地铁隧道,要绝对保证地铁的正常安全运行和地铁隧道结构防水构造的安全。按特级监控等级确定盾构穿越施工引起的地铁隧道变形≤5mm;

2、地铁隧道边缘前后各6环为穿越段,在盾构推进至穿越段10-40环处设盾构穿越前的试验段,试验段一般20-30环;

3、试验段上沿盾构推进轴线上每隔5环布置深层沉降监测点,每3环布置地表沉降监测点,要准确推算出监测点里程及其距地铁隧道的距离;深层沉降点埋深同地铁隧道底点的埋深,地表沉降点要设置在原状土上;

4、试验段上深层隆沉量δd 的控制值为5mm,地表沉降量的控制值【δg】则按盾构中心埋深及盾构施工地层损失率为1‰推算设定。根据地层沉降监测数据,按盾构通过,盾构前方地面隆起δg<1/3【δg】,盾尾后地表沉降δg<【δg】调整优化盾构推进速度、螺旋机转速、注浆量、注浆压力等参数以作为盾构穿越阶段的施工参数之基础依据;

5、盾构穿越段推进时再按地铁隧道中电子水平尺所反映的隧道纵向变形曲线,调整正面压力,微调注浆量、注浆压力、推进速度、螺旋出土量等参数,使最大隧道变形不超过警戒值(3mm);

6、穿越后应根据4.5之规定进行补浆和双液注浆加固,确保沉降稳定; 7、盾构上方穿越地铁隧道时,除按上述要求做好穿越前试验段及穿越施工的严

8

密监控之外,还应根据计算确定穿越段隧道的压重大小与范围,以抑制隧道的回单变形。

四、盾构穿越沉降敏感类地面建筑的风险控制

1、对沉降敏感的重要建筑,应在其安全性评估的基础上按一级以上监控等级(含一级)对房屋进行监控,穿越前必须设置试验段,优化盾构施工参数; 2、当盾构与房屋基础之间为流塑、高灵敏度地层时,盾构正面压力应控制在使自然地面微量隆起且不超过2mm的程度,同步注浆压力应维持在垂直覆土压力附近。既要防止注浆压力不足引起沉陷,又要防止注浆压力过大导致地面冒浆; 3、为弥补盾构同步注浆不足及长期沉降对房屋安全的影响,应按4.5的要求对盾构穿越房屋基础过程中及通过后3个月内分别进行壁后跟踪补浆和双液分层注浆加固。其中,双液分层注浆加固应根据盾构与房屋的相对位置关系及地层分布特点谨慎选择注浆孔点位、打管长度、拔管速度、注浆流量等关键施工参数,由有经验的专业单位实施。

9