《电力系统继电保护(第二版)》读书笔记 - 图文 联系客服

发布时间 : 星期日 文章《电力系统继电保护(第二版)》读书笔记 - 图文更新完毕开始阅读5919bf71f90f76c660371a4b

距离保护中故障判断的启动元件主要有反映电压、电流中负序分量或零序分量的判断元件和反映电流突变量的判断元件两种。

3.6 故障类型判别和故障选相

目前数字式保护常用相电流差(即两相电流的相量差)的突变量进行选相。 根据测量电流是否含有零序分量判定是接地还是不接地短路。如果是接地短路,在三个相电流差突变量中如有两个值远大于另一个值则判断出是某单相接地短路,如为一个值大于另外两个值,则为两相接地短路,该值对应的两相就是故障相。两相非接地短路根据两相电流突变量远大于第三相电流突变量值判定。

根据测量电流中是否含有负序分量,可确定故障是两相短路还是三相短路,在判为两相故障的情况下,求三个相电流差突变量的最大值,与之对应的两相就是故障相。

3.7 距离保护特殊问题的分析

短路点的过渡电阻Rg是指当接地短路或相间短路时,短路点电流经由相导线流入大地流回中性点或由一相流到另一相的路径中所通过物质的电阻,包括电弧电阻,中间物质的电阻,相导线与大地之间的接触电阻,金属杆塔的接地电阻等。

相间故障时,过渡电阻主要由电弧电阻组成。电弧电阻大小与电弧弧道的长度成正比,而成电弧电流的大小成反比。相间故障的电弧电阻一般在数欧至十几欧之间。

导线接地短路时,对于500KV的线路,最大过渡电阻可达300Ω,而对220KV线路,最大过渡电阻约为100Ω。

距离保护装置距短路点越近时,受过渡电阻影响越大;同时,保护装置的整定阻抗越小(相当于被保护线路越短),受过渡电阻的影响越大。

单侧电源线路上在没有助增和外汲分支时,过渡电阻中的短路电流与保护安装处的电流为同一个电流。过渡电阻的存在总是使继电器的测量阻抗值增大,阻抗角变小,保护范围缩短,会出现保护拒动或越级跳闸。

双侧电源线路上,保护安装处的总测量阻抗可能会因过渡电阻的影响而减小,严重情况下,可能使测量阻抗落入其距离保护Ⅰ段范围内,造成误动,这种因过渡电阻的存在而导致保护测量阻抗变小,进一步引起保护误动作的现象称为距离保护的稳态超越。也可能造成测量阻抗的增大,使Ⅱ段保护拒动。

接地故障时,过渡电阻远大于相间故障的过渡电阻,所以过渡电阻对接地距离元件的影响要大于对相间距离元件的影响。

在整定值相同的情况下,动作特性在+R轴方向所占的面积越小,受过渡电阻Rg的影响就越大。反之,耐受过渡电阻的能力越强。因此偏移圆阻抗动作特性比方向圆耐受过渡电阻的能力强。

四边形特性测量元件的上边适当的向下倾斜一个角度,可以有效地避免稳态超越问题。 在远距离的高压或超高压输电系统中,为了增大线路的传输能力和提高系统的稳定性,可以采用线路串联补偿电容的方法来减小系统间的联络阻抗。

系统发生不对称短路后,负序电源在故障点处,负序电流由故障点经线路等流向系统中性点。

3.8 工频故障分量距离保护

系统故障时,相当于系统故障分量状态突然接入,电压、电流的故障分量,就相当于无源系统对于故障点处突然加上的附加电压源的响应。

在任何运行方式、运行状态下系统故障时,保护安装处测量到的全电压um、全电流im

可以看作是故障前状态下电压u、电流i 与故障分量电压Δu、电流Δi的叠加。即um

[0][0]

=u+Δu,im=i+Δi,故障分量电压、电流Δu和Δi中,既包含了系统短路引起的工频电压、电流的变化量,还包含短路引起的暂态分量。

故障分量仅在故障后存在,故障点的故障分量电压最大,故障附加状态下的电源电动势

[0]

的大小,等于故障前短路点电压的大小,假定故障前为空载,非故障状态下短路点电压UK 的大小等于保护安装处母线电压的大小。系统中性点的故障分量电压为零,故障分量中的工频故障分量和故障暂态分量都可以用来作为继电保护的测量量,且可使保护的动作性能基本不受负荷状态、系统振荡因素的影响。

4. 输电线路纵联保护

4.1 输电线路纵联保护概述

将一侧电气量信息传到另一侧,安装于线路两侧的保护对两侧的电气量同时比较、联合工作,纵向联系。两端的装置组成一个保护单元,各端不能独立。

输电线路的纵联保护两端比较的电气量可以是流过两端的电流(电流波形)、流过两端电流的相位、流过两端功率的方向和两端的测量阻抗等,构成不同原理的纵联保护。

纵联保护可以按通道类型或保护动作原理进行分类,按信息通道分为4种类型:①导引线保护;②电力线载波保护;③微波保护;④光纤保护。

按照保护动作原理,纵联保护可以分为两类:

(1)方向比较式纵联保护。两侧保护装置将本侧的功率方向、测量阻抗是否在规定的方向、区段内的判别结果传送到对侧,每侧保护装置根据两侧的判别结果,区分是区内故障还是区外故障。这类保护在通道中传送的是逻辑信号,而不是电气量本身,传送的信息量较少,但对信息可靠性要求很高。按照保护判别方向所利用的原理可将方向比较式纵联保护分为方向纵联保护和距离纵联保护。

(2)纵联电流差动保护。利用通道将本侧电流的波形或代表电流相位的信号传送到对侧,直接比较两侧的电气量。

输电线路短路时两侧电气量的故障特征:

(1)两端电流相量和的故障特征:输电线路(不考虑分布电容和电导及其它影响),在正常运行或外部故障时,两侧电流相量和等于零;当线路发生内部故障时,在故障点有短路电流流出,两端电流相量和等于流入故障点的电流īk。

(2)两端功率方向的故障特征:正常运行和区外故障时,两端的功率方向相反,其中正常运行时,线路送电端功率方向为正,受电端为负,区外故障时,远故障点端功率由母线流向线路,功率方向为正,近故障点端功率由线路流向母线,功率方向为负;而发生区内故障时,两端功率方向均为由母线流向线路,同为正方向。

(3)两端电流相位特征:当发生区内短路时,两侧电流同相位;当正常运行和发生区外故障时,两侧电流相位相差180°。

(4)两端测量阻抗的特征:当线路区内短路时,输电线路两端的测量阻抗都是短路阻抗,一定位于距离保护Ⅱ段的动作区内,两侧的Ⅱ段同时启动;当正常运行时,两侧的测量阻抗是负荷阻抗,距离保护Ⅱ段不启动;当发生外部短路时,两侧的测量阻抗也是短路阻抗,但一侧为反方向,至少有一侧的距离保护Ⅱ段不启动。

纵联保护的基本原理:

(1)利用输电线路两端电流和(瞬时值或相量)的特征,可以构成纵联电流差动保护,|īM+īN|≥Iset

(2)利用输电线路两端功率方向相同或相反的特征可以构成方向比较式纵联保护。当

[0][0]

系统中发生故障时,两端保护的功率方向元件判别流过本端的功率方向,功率方向为负者(近故障点端)发出闭锁信号,闭锁两端的保护称为闭锁式方向纵联保护;或者功率方向为正者(远故障点端)发出允许信号,允许两端保护跳闸,称为允许式方向纵联保护。

(3)利用两端电流相位的特征差异,比较两端电流的相位关系构成电流相位比较式纵联保护。两端保护各将本侧电流的正、负半波信息转换为表示电流相位,并利于传送的信号,送往对端,同时接收对端送来的电流相位信号,与本侧比较。当两端电流相角差近似为0°时,输电线路发生区内短路,保护动作;当差近似为180°时,为正常运行或发生区外短路,保护不动作。

(4)距离纵联保护,它的构成原理和方向比较式纵联保护相似,只是用方向阻抗元件替代功率方向元件。它比较方向比较式纵联保护的优点在于:当故障发生在保护Ⅱ段范围内时相应的方向阻抗元件才启动,减少了方向元件的启动次数,从而提高了保护的可靠性。一般高压线路配备距离保护作为后备保护,距离保护的Ⅱ段作为方向元件,简化了纵联保护(主保护)。

4.2 输电线路纵联保护两侧信息的交换

(1)导引线通信,导引线通道电缆直接传输交流二次电量波形,常采用电流差动原理,其接线可分为环流式和均压式两种,动作线圈接在导引线回路中,在正常运行或外部故障时,动作线圈中没有电流通过,当出现差动电流时,保护动作。导引线纵差保护不受电力系统振荡的影响,不受非全相运行的影响,在单侧电源运行时仍能正确工作。但导引线发生开路或短路时,会误动或拒动。导引线通信一般用于较短线路(10km以内)。

(2)电力线载波通信,电力线载波通道由输电线路及其信息加工和连接设备等组成,有阻波器、结合电容器及高频收发信机。将线路两端的电流相位(或功率方向)信息转变为高频信号,经过高频耦合设备将高频信号加载到输电线路上,输电线路本身作为高频信号的通道将高频载波信号传输到对端,对端再通过高频耦合设备将高频信号接收,以实现各端电流相位(或功率方向)的比较,这就是高频保护或载波保护。

电力线载波通信可分为使用两相线路的“相—相”式和使用一相一地的“相—地”式两种。

阻波器采用电感线圈与可调电容组成的并联谐振回路,当阻波器谐振频率等于高频载波信号的频率时,对载波电流呈现极高的阻抗(1000Ω以上),从而将高频电流限制在本线路以内。而对工频电流,阻波器仅呈现电感线圈的阻抗(约0.04Ω),不影响工频电能量传输。耦合电容器则对工频信号呈现非常大的阻抗,使工频对地泄漏电流减到极小,而对高频载波电流呈现很小的阻抗,与连接滤波器共同组成带通滤波器,只允许此通带频率内的高频电流通过。连接滤

波器同一个可调电感的空芯变压器和一个串接在副边的电容构成。

电力线载波通信通道传输的信号频率一般为50~400kHz。高压输电线路上的干扰会直接进入载波通道。高频载波的通信速率低,信号传输从发出到被接收之间有一定的延时,只能传递简单的逻辑信号。因此一般用来传递状态信号,用于构成方向比较式纵联保护和电流相位比较式纵联保护。

电力线载波信号分为闭锁信号、允许信号和跳闸信号。跳闸信号只要本端保护元件动作或对端传来跳闸信号都直接引起跳闸,所以本侧和对侧的保护元件必须具有单独区分区内故障和区外故障的能力,一般用于阶段式保护Ⅰ段,如距离保护Ⅰ段,零序电流保护Ⅰ段等。

(3)微波通信,电力系统使用的微波通信频率段一般在300~30,000MHz之间的超短波的无线电波。传输距离40~60km,过远时要装设微波中继站(微波站)。

微波信号的调制可以采取频率调制(FM)方式和脉冲编码调制(PCM)方式,可以传送模拟信

号,也可以传送数字信号。可以传送电流波形信息实现纵联分相电流差动原理的保护。

(4)光纤通信,光纤通道也广泛采用脉冲编码调制(PCM)方式,电信号与光信号转换。