MATLAB在电力系统工程中的应用 联系客服

发布时间 : 星期日 文章MATLAB在电力系统工程中的应用更新完毕开始阅读59e315a5284ac850ad02422d

山东科技大学学士学位论文 MATLAB在电力系统分析中的优势

户编写可以和MATLAB进行交互的C或C++语言程序。另外,MATLAB网页服务程序还容许在Web应用中使用自己的MATLAB数学和图形程序。MATLAB的一个重要特色就是具有一套程序扩展系统和一组称之为工具箱的特殊应用子程序。工具箱是MATLAB函数的子程序库,每一个工具箱都是为某一类学科专业和应用而定制的,主要包括信号处理、控制系统、神经网络、模糊逻辑、小波分析和系统仿真等方面的应用。

2.2.7 应用软件开发(包括用户界面)

在开发环境中,使用户更方便地控制多个文件和图形窗口;在编程方面支持了函数嵌套,有条件中断等;在图形化方面,有了更强大的图形标注和处理功能,包括对性对起连接注释等;在输入输出方面,可以直接向Excel和HDF5进行连接。

2.3 小结

利用MATLAB的电力系统模块库可以对所研究的对象进行各种暂态和稳态数字仿真,了解电气参数变化对电力系统分析、运行的影响,验证理论分析结果。许多大型电力实验由于实际条件难以满足,系统的安全运行也不允许进行实验,而使用MATLAB/SIMULINK可以解决这些问题。MATLAB是进行电力系统建模仿真和系统分析的一个强有力的实用工具。

9

山东科技大学学士学位论文 MATLAB程序语言在潮流计算中的可行性分析

3 MATLAB程序语言在潮流计算中的可行性分析

3.1 引言

潮流计算是电力系统规划、运行的基本研究方法。随着现代电力系统非线性与多元件的特点日益突出,其计算量与计算复杂度急剧增加。高效的潮流问题的相关软件的研究已成为大规模电力系统仿真计算的关键。随着计算机技术的不断发展和成熟,基于MATLAB潮流计算研究近年来得到了长足的发展,为真正解决大电网快速、详细的仿真技术开辟了新思路。针对这一现状,本章节中以一个简单的电力网络模型为例,提出了基于MATLAB语言的潮流计算程序,并验证了其正确性与可行性。

3.2 几种新型的潮流计算方法介绍

3.2.1 潮流计算的人工智能方法

近年来,人工智能作为一种新兴的方法,越来越广泛的应用到电力系统潮流计算中。该方法不像传统方法那样依赖于精确地数学模型,这种方法只能基于对自然界和人类本身活动的有效类比而得到启示。具有代表性的遗传法、模拟退火法、粒子群优化算法等。

遗传算法是80年代出现的新型优化算法,近年来迅速发展,它的机理源于自然界中生物进化的选择和遗传,通过选择、杂交和变异等核心操作,实现“优胜劣汰”,遗传算法优点是具有很好的全局寻优能力,优化结果普遍比传统优化方法好,缺点是计算量比较大,计算时

10

山东科技大学学士学位论文 MATLAB程序语言在潮流计算中的可行性分析

间长。

模拟退火算法是基于热力学原理建立的随机搜索算法,也可以视为一种进化优化方法,是一种有效的通用启发式随机搜索方法。算法思想来源于固体退火原理:将固体加温至充分高温,再让其徐徐冷却,加温时固体内部随温升变为无序状态,内能加大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。其算法原理比较简单,只是对常规的迭代寻优算法进行一点修正,允许以一定的概率接受比前次稍差的解作为当前解。

粒子群优化算法源自对群鸟捕食行为的研究,本质上属于迭代的随机搜索算法,具有并行处理特征,易于实现。该算法原理上可以以较大的概括找到优化问题的全局最优解,计算效率较高,已成功地应用于求解电力系统中各种复杂的优化问题。[6]

3.2.2基于L1范数和现代内点理论的电力系统潮流计算方法

一般潮流计算采用迭代的计算方法,然而,这些直接迭代求解的方法有一个共同的缺点:病态潮流计算问题。在一些病态电力系统的计算中,算法常常出现震荡和不收敛的现象。针对上述情况,研究人员提出了基于非线性规划模型的算法。该类算法在数学上可表示为求一个由潮流方程构成的目标函数最小值问题。在给定运行条件下,若潮流问题有解,则目标值为零;若潮流问题无解,则目标值为一不为零的正值,因此,计算过程不会发散。国内专家学者对解决此问题也进行了许多有益的探讨。

基于L1范数的计算原理,潮流方程的求解可以转化为求解一个新的非线性规划模型LILF,并结合现代内点算法来进行求解。和过去的模型相比,该模型非常简洁、直观,易于编程。仿真结果显示,与现

11

山东科技大学学士学位论文 MATLAB程序语言在潮流计算中的可行性分析

代内点算法相结合的求解过程表现出良好的收敛性和快速性,计算结果准确、可靠,计算各种病态系统均可良好的收敛。

基于L1范数的数学规划模型将传统电力系统潮流的直接迭代求解转化为对一简单规划问题的求解后,对系统运行中各部分的控制可更加简便。增加适当的不等式约束和相关控制变量,即可获得近似于最优潮流的计算模型,可方便的进行潮流计算中的调整。

3.2.3 电力系统双向迭代并行潮流计算方法

双向迭代并行潮流算法通过基于浓缩网络的前向简化、后向回代过程来求解潮流。其中前向简化技术从计算节点出发,对每个计算节点的潮流牛顿法线性修正方程中虚拟电流的相关项。在这一过程中,子网络的整个潮流状态和拓扑关系通过接口的变量增量的线性关系对主网络的雅可比矩阵以及右边不平衡的修正引入到主网络方程当中。完成所有的计算节点的修正之后,得到可以求解的线性方程,用高斯消去法等方法可以得到主网络上所有母线电压在这次迭代中的修正量。后向回代从主网络出发到各个计算节点。将网格侧的边界分裂母线电压修正量传给对应的计算节点侧的分裂母线,再根据前向简化过程得到的变量线性关系回代求取计算节点内部潮流变量迭代的修正量,直至浓缩网格中每一节点的变量增量都计算完毕,以上过程为潮流方程牛顿迭代过程的一次迭代,一次双向迭代修正一次潮流变量。双向迭代过程往复进行,直至潮流方程不平衡量得残差满足精度要求,潮流才收敛。

3.2.4 配电网模糊潮流计算方法

针对配电系统中存在的大量不确定因素,有文献提出一种改进的

12