Graphitic Tribological Layers in Metal-on-Metal Hip Replacements - 图文 联系客服

发布时间 : 星期日 文章Graphitic Tribological Layers in Metal-on-Metal Hip Replacements - 图文更新完毕开始阅读5b0166b7f242336c1eb95ee8

REPORTS

Fig.3BandTable1,theemissionlifetimeandquantumyieldofthe3MLCTexcitedstateof[Co(pyacac)3{Re(bpy)(CO)3}3]3+areidenticaltothatoftheGaRe3modelcomplex,anobservationthatindicatesacompleteabsenceofreactivitybetweenthecharge-transferexcitedstateoftheRe-bpyfragmentandtheCoIIIcore.

Ananalysisofthespin-coupledpathwaysfordipolarenergytransferavailableinthesetwosystemsprovidesasurprisinglysimpleexplanationforthismarkeddifferenceinphotophysicalbe-havior(Fig.4).Inbothcompounds,the3MLCTexcitedstatehasaspinmultiplicityof|SD*|=1;energytransferfromthisstatetotheM(pyacac)3coreresultsinreformationofthesingletgroundstateoftheRe-bpymoiety(|SD|=0).InthecaseofM=CrIII,the4A2groundstate(|SA|=3/2)createsaspinmanifoldinthereactantangularmomentumspacespanning|SR|=?,3/2,and5/2;thisrequirescouplingtoanexcitedstateoftheacceptorchar-acterizedby|SA|=?,3/2,or5/2inordertorealizeaspin-allowedpathway.Angularmomentumcon-servationisclearlysatisfiedwiththe4T2excitedstateoftheCrIIIcore(|SA*|=3/2),asarethermo-dynamicconsiderationsbyvirtueoftheresonantconditionthatexistsbetweentheRe-bpyemissionandthe4A2→4T2absorption.Thus,dipolarenergytransfercanproceedthroughthecommonalityofS=3/2statesinboththereactantsandproducts,andexcited-statequenchingofthe3MLCTemis-sionisobserved.UponreplacementofCrIIIbyCoIII,thethermodynamicsofenergytransferareessentiallyunchanged;however,thelow-spind6configurationoftheCo(pyacac)3corefundamen-tallyaltersthemomentumconservationcondition.Specifically,thephosphorescentnatureofthe3MLCT→1A1emissionrequirescouplingtoanexcitedstateoftheCoIIIhaving|SA*|=1,not|SA*|=0,whichdefinesthe1A1→1T1absorption.Di-polarenergytransferisthereforespin-forbiddenfortheCoRe3assembly,thusgivingrisetoemission

fromtheRe-bpyluminophorethatisindistinguish-ablefromthatoftheGaIIImodelcomplex.

Althoughthechemicalsystemsjustdescribedweredesignedspecificallytoillustratetheprin-cipleofangularmomentumconservationindi-polarenergytransfer,itdoesnotappeartousthatthisformalismshouldbelimitedtoenergytrans-fer.Inprinciple,aparallelsetofexpressionsforanychemicalreactioncouldbedraftedinwhichconsiderationofreactantandproductangularmomentaservestodifferentiatevariousthermo-dynamicallyviablepathways.Itseemslikelythattheissuesraisedhereinwillmanifestmoreread-ilyininorganicratherthanorganicsystemsbe-causeofthebroaderarrayofspinstatesgenerallyaccessibleinsuchcompounds;however,webe-lievethattheunderlyingconceptsreflectedinthissimpleformalismandexperimentallyverifiedinourstudyshouldbegeneralizableacrossawidearrayofchemicalprocesses.

ReferencesandNotes

1.L.D.Landau,E.M.Lifshitz,TheClassicalTheoryofFields(Butterworth-Heinemann,Oxford,1995).

2.K.K.Rohatgi-Mukherjee,FundamentalsofPhotochemistry(NewAge,NewDelhi,1978).

3.J.R.Lakowicz,PrinciplesofFluorescenceSpectroscopy(Springer,NewYork,ed.3,2006).

4.M.A.Baldoetal.,Nature395,151(1998).

5.D.Gust,T.A.Moore,A.L.Moore,Acc.Chem.Res.42,1890(2009).

6.E.Wigner,Nachr.Akad.Wiss.GoettingenMath.Phys.K1-2A,375(1927).

7.O.Kahn,MolecularMagnetism(Wiley-VCH,NewYork,1993).8.J.H.MooreJr.,Phys.Rev.A8,2359(1973).

9.C.S.Enos,A.G.Brenton,A.R.Lee,Int.J.MassSpectrom.IonProcess.122,361(1992).

10.R.Burgertetal.,Science319,438(2008).

11.B.T.Weldon,D.E.Wheeler,J.P.Kirby,J.K.McCusker,

Inorg.Chem.40,6802(2001).

12.C.Achim,E.L.Bominaar,R.J.Staples,E.Münck,

R.H.Holm,Inorg.Chem.40,4389(2001).

13.V.W.Manner,A.D.Lindsay,E.A.Mader,J.N.Harvey,

J.M.Mayer,Chem.Sci.10.1039/c1sc00387a(2011).14.J.N.Harvey,Phys.Chem.Chem.Phys.9,331(2007).15.A.A.Martíetal.,J.Am.Chem.Soc.129,8680(2007).

16.A.L.Buchachenko,V.L.Berdinsky,J.Phys.Chem.100,

18292(1996).

17.J.D.Kestell,Z.L.Williams,L.K.Stultz,J.P.Claude,

J.Phys.Chem.A106,5768(2002).

18.T.F?rster,Discuss.FaradaySoc.27,7(1959).19.T.E.Knight,D.Guo,J.P.Claude,J.K.McCusker,

Inorg.Chem.47,7249(2008).

20.GaIIIhasaclosed-shell,d10valenceelectronicconfiguration.

Assuch,itisneitherredox-activenordoesitpossesselectronicexcitedstatesthatareenergeticallyavailableforenergytransferinthevisibleregion.21.SeesupportingmaterialatScienceOnline.

22.J.N.Demas,J.W.Addington,J.Am.Chem.Soc.98,

5800(1976).

23.D.Rehm,A.Weller,Isr.J.Chem.8,259(1970).24.J.P.Claude,T.J.Meyer,J.Phys.Chem.99,51(1995).25.Y.B.Lei,T.Buranda,J.F.Endicott,J.Am.Chem.Soc.

112,8820(1990).

26.L.S.Forster,Chem.Rev.90,331(1990).

27.Theextinctioncoefficientsfor[Cr(pyacac)3{Re(bpy)(CO)3}3]3+andtheCrIIIreferencecompoundCr(phacac)3revealedthat~9%oftheincidentphotonsatlpump=375nmdirectlyexcitetheCrIIIcore;theremaining~91%areabsorbedbytheRe-bpymoiety.Whenthedataarescaledaccordingly,theobservedemissionintensityat80KislargerthancanbeaccountedforviadirectexcitationofCrIIIbynearlyafactorof10.Further

detailscanbefoundinfig.S2andtheaccompanyingtext.28.Estimatedfromthex-raystructureof

[Ga(pyacac)3{Re(bpy)(CO)3}3](OTf)3(21).29.D.L.Dexter,J.Chem.Phys.21,836(1953).

Acknowledgments:WethankG.Blanchardforassistancewiththetime-correlatedsingle-photoncountingemissionmeasurements,andA.BrownandC.McCuskerforpreliminaryspectroscopicmeasurementsontheCoRe3assembly.SupportedbyNSFgrantCHE-0911592.Metricalparametersforthestructureofcompound3canbeobtainedfreeofchargefromtheCambridgeCrystallographicDataCentreviawww.ccdc.cam.ac.uk/data_request/cifunderreferencenumberCCDC831982.

SupportingOnlineMaterial

www.sciencemag.org/cgi/content/full/334/6063/1684/DC1MaterialsandMethodsFigs.S1toS7TablesS1toS5References(30–39)

20July2011;accepted10November201110.1126/science.1211459

GraphiticTribologicalLayersinMetal-on-MetalHipReplacements

Y.Liao,1R.Pourzal,2M.A.Wimmer,3J.J.Jacobs,1,3A.Fischer,2,3L.D.Marks1*

Arthritisisaleadingcauseofdisability,andwhennonoperativemethodshavefailed,aprostheticimplantisacost-effectiveandclinicallysuccessfultreatment.Metal-on-metalreplacementsareanattractiveimplanttechnology,alower-wearalternativetometal-on-polyethylenedevices.Relativelylittleisknownabouthowslidingoccursintheseimplants,exceptthatproteinsplayacriticalroleandthatthereisatribologicallayeronthemetalsurface.Wereportevidence

forgraphiticmaterialinthetribologicallayerinmetal-on-metalhipreplacementsretrievedfrompatients.Asgraphiteisasolidlubricant,itspresencehelpstoexplainwhythesecomponentsexhibitlowwearandsuggestsmethodsofimprovingtheirperformance;simultaneously,thisraisestheissueofthephysiologicaleffectsofgraphiticweardebris.rthritis,orrheumatism,istheleadingcauseofdisability,affectinganestimated8.6millionpeopleintheUnitedStates

asof2005(1),withcomparableestimateselse-where.By2030,thenumberofAmericanadults

clinicallysuccessfultreatment.Currently,uptothreetotalhipreplacementproceduresper1000inhabitantsareperformedincountriesbelongingtotheOrganisationforEconomicCo-operationandDevelopment(2);Germanyleadswiththelargestnumberofreplacementspercapita,andtheU.S.performsthemostproceduresoverall.Asof2003,~202,500primarytotalhipreplace-mentswereperformedannuallyintheU.S.By2030,thisnumberisexpectedtoincreasebymorethan174%to~572,000hipreplacements.Arthritisofthehiphasanincreasinglylargepublichealthimpactintermsofmorbidity,disability,andthecostofdisabilityandtreatment.Tominimizetheimpactontheindividualpatientandsociety,it

DepartmentofMaterialsScienceandEngineering,North-westernUniversity,Evanston,IL60201,USA.2MaterialsScienceandEngineering,UniversityofDuisburg-Essen,Germany.3DepartmentofOrthopedicSurgery,RushUniversityMedicalCenter,Chicago,IL60612,USA.

*Towhomcorrespondenceshouldbeaddressed.E-mail:l-marks@northwestern.edu

1A

aged65andolder(thesegmentofthepopulationwiththehighestprevalenceofarthritis-relateddisability)willdoubleto~71million(1).Forindividualsafflictedwithend-stagearthritisofthehip,arthroplastyisthemostcost-effectiveand

SCIENCE

VOL334

www.sciencemag.org23DECEMBER20111687

REPORTS

isimperativethathipreplacementsaredurable,ideallylastingfortheextentofthepatient’slife.Unfortunately,thematerialscurrentlyusedinhipreplacementshavelimiteddurability,inlargepartduetodegradationinservice.Thedegradativeprocessesincludewearandcorrosion,andthepro-ductsarebioreactivespecies(micrometer-andnanometer-sizedparticulatedebrisandmetalions)thatinteractwithlocaltissuesproducinganad-verseresponsethatmayleadtoimplantfailureandrequirerevisionsurgery.Anotherleadingcauseoftotalhipreplacementfailureispostoperativeinstability(dislocation)(3),whichcanbeminimizedbytheuseoflarge-diameterfemoralheads.Thisexplainsthepopularityofmetal-on-metal(MoM)bearings;forinstance,asusedinupto35%oftheprimarytotalhipreplacementproceduresper-formedintheU.S.MoMbearingsareattractive,astheyhavelesswearthanmetal-on-polyethylenebearings,therebyminimizingdebris-associatedfailures.Inaddition,theirmechanicalpropertiesallowthin-walledacetabularcomponentssothatlargefemoralheadscanbeused.Furthermore,MoMbearingsallowhipresurfacingproceduresthathelptopreservefemoralbonestock,whichishighlydesirableforyoungpatients.

However,thereareincreasingreportsthatMoMtotalhipreplacementsandsurfacereplace-mentsarenotimmunetotheadverselocaltissueresponsesduetodegradationproductsgeneratedbywearandcorrosionthatwereobservedwithearliermetal-on-polyethylenebearingcouples(4).InApril2010andFebruary2011,theregu-latoryagenciesoftheUKandtheU.S.,respec-tively,issuedalertsforMoMhipreplacements.Theseproblemsseemtoberelatedtospecificim-plantdesignsaswellasnonoptimalpositioning,andthereareprosthesesthathavebeenworkingsuccessfullyinpatientsfordecades(5).

ForcurrentMoMbearinghipreplacements,whichalmostalwaysinvolveausteniticcobalt-chrome-molybdenum(CoCrMo)alloys,afairamountisknownaboutthemetallurgyfarbelowtheslidingcontactregion(micronsaway)(6).AlthoughthemetalplaysanimportantroleinFig.1.(A)Thetribolog-icallayer(darkregion)wasscrapedoffwiththeuseofatungstenprobeintheFIB.(B)ThefilmwasattachedtoacopperTEMgrid.

loadbearing,theremustalsobesomelubricationmechanismwithinthehumanbody,asotherwisethewearrateswouldbeprohibitiveandseveremetaltoxicitywouldbecommon.ProteininthesurroundingfluidisknowntoplayacriticalroleforMoMreplacements(7–10).Todate,relative-lylittleisknownabouttheregionwhereactiveslidingtakesplace(boundarylubrication),thetriboactiveregion—onlythatthereisacarbon-richlayer.Wimmeretal.examined42retrievedMoMMcKee-Farrarprosthesesandreportedthatmorethan80%ofthemexhibitedtribologicallayersadheredfirmlytothesurfaceswithvaryingthick-nesses(11).Thetribologicallayerwasalsoformedonmetalcomponentsinsimulatortestsinbovineserum.Itwassuggestedthatthislayerwasgen-eratedduringoperationinhumansynovialfluidorbovineserumenvironments(6,12).Analysesshowedthatthistribologicallayercontainednanoparticles(presumablydetachedfromthesubstrate)ofthemetalandasubstantialamountofcarbonalongwithpossiblecalcium,oxygen,phosphorus,magnesium,nitrogen,sodium,andchlorine(11,13,14).However,relativelyharshmethods,whichcouldeasilydamagecarbon-containingcompounds,wereusedtopreparethesamples.Otherexperiments,focusingmoreonthedegradationproductswithsomesurfacechar-acterization(15,16),alsopointtowardatribo-logicallayerwithdifferentchemistry/propertiesplayingacriticalrole,plussomechemicalchangesaslower–molecularweightfragmentswereob-served.Ithasbeencommonlyassumed(withoutproof)thatthetribologicallayerismadeupofdenaturedproteins(6,11,15–18);thatis,proteinsthathavelosttheirhigher-orderstructure,withperhapssomeminorchemicalchanges.Assuch,itwouldbeintrinsicallybiologicalincharacter,similartolubricationinnaturaljoints.Wefind,however,thatthislayerisverydifferentbothinformandfunction,havingmoreincommonwithlubricationofacombustionenginethanlubri-cationofanaturaljoint.

Ourinitialaimwastounderstandthetribo-logicallayer,mainlytheembeddedmetallicnano-particles,andtolookforprocessessuchascarbonsegregationtograinboundariesinthenear-surfaceregionofthemetal.Intheprocessofroutineini-tialcharacterizationbytransmissionelectronmi-croscopy(TEM)ofsamplesthinnedwithafocusedionbeam(FIB),wenoticedthatelectronenergy-lossspectra(EELS)showedastrongp*prepeak,awell-knownfingerprintofgraphiticcarbon(19,20);high-resolutionelectronmicroscope(HREM)im-agingexperimentssuggestedasimilarconclu-sion(seefigs.S1andS2).

Byitself,thisisnotsufficientproofofgra-phiticcarbon,astheelectronbeaminthemi-croscopecanchangeorganicmaterials;onealsoneedstobeconcernedaboutthesampleprepa-rationmethods.Foradefinitivetest,weneedtoruleoutartifactsfrombothofthesetechniques.Wethereforeusedananomanipulatorinsideadual-beamscanningelectronmicroscopy/FIBsystemtoscrapethetribologicallayeroffofsamplesretrievedfrompatients,asshowninFig.1.Wethengeneratedtwocontrolsamples(21):(i)driedbovinecalfserum,scrapedoffasubstratemadeofCoCrMoalloyusingFIBunderthesameconditions(control1),and(ii)free-standingdriedbovinecalfserumfilmoneitheracoppergridorasiliconmembrane(control2).

200000

serum dried on copper grid

Intensity (counts)150000

49 e/?2

10000050000

3.8x104 e/?2

0

250300350400450

Energy Loss (eV)

Fig.2.EELSspectrumoftheserumdriedonacoppergridfordifferentelectrondoses,withthe49e/?2spectrumoffsetby100,000counts.Thechangewithadoseof3.8×104e/?2wasminimal.

168823DECEMBER2011VOL334SCIENCEwww.sciencemag.org

REPORTS

Comparingcontrol1withcontrol2,thecar-bonpeakofthebovinecalfserumscrapedoffusingthemicroprobeintheFIBisessentiallythesameasthatofserumdrieddirectlyonacoppergridorasiliconmembrane,indicatingthatspec-imenpreparationintheFIBdidnotgenerateanygraphiticcarbon.

Fig.3.EELSspectrumofthetribologicallayer,driedbovineserum,andgraphite.Thep*peakisabsentinthedriedserumbutclearlypresentinthetribologicallayer,withansp2bondingfractionof82%.

Fromthecontrolexperiments(Fig.2),weobservethatatotaldoseof~3.8×104electrons(e)per?2doesnotseverelydisturbthecontrolsamples.Itisworthnotingthatthecarbonp*peakdidformunderaveryhighelectrondoseof5×108e/?2(fig.S3).Afinalcalibrationexperi-mentwastolookatthechangeoftheEELS

spectrumasafunctionofdoseforthetribologicallayers.Supplementalfig.S4showsthatEELSspectraofthetribologicallayerdidnotdisplayanydiscerniblechangeuptoadoseof1.1×105e/?2.Thus,theelectrondosedidnotaffectthep*intensityduringinitiallow-magnificationTEMimagingandEELSspectrumcollection,aswouldbeexpectedbasedonworkontribo-inducedgra-phiticmaterialinnearlyfrictionlesscarbon(22).ThemainexperimentalresultsareshowninFig.3.Atotalofthreesamples[fromthefirstre-trieval(21)]analyzedwithadoseof~58e/?2allshowedaclear,strongpre-edgep*peakaswellaslowoxygensignals,asdidadditionalsamplesretrievedfromtwootherpatients,onefromeach(21).Insomeareascalciumwasalsopresent,whichwebelievecamefrombonefragments.Usinghighlyorderedpyrolyticgraphiteasacalibrant,wedeterminedtheamountofgraphiticcarbonas~82osedontheintensitiesofthep*ands*peaks(23,24).Thetribologicallayerdidnothaveanynitrogen,whereasdriedbovinecalfserumexhibitedastrongnitrogenpeak.BovinecalfserumdriedonacoppergridhasexperimentalC:N:OmolarratiosofC:N:O=1:0.17:0.46intheEELSdata(25),whereasforbovineserumalbuminthetrueratiosareC:N:O=1:0.27:0.30.TheC:OmolarratiointhetribologicallayerisC:O=1:0.07.Usingtheoxygen-integratededgesignalfromcon-trol2asacalibrant,weestimatetheatomicpercentofoxygeninthetribologicalmaterialtobe5%.Figure4showsatypicalHREMmicrographofthetribologicallayeralongwithapowerspec-trum;everyareathinenoughforgoodimagingthatwasexaminedshowedsimilarresults.Short-rangeorderedregionsarepresentwithatypicalsizeofseveralnanometers.Thespacingofthedominantfringesintheimagewasmeasuredtobe~0.34nm,confirmingthatthetribologicallay-erwasprimarilypartiallygraphitizedcarbon.Asasecondaryconfirmation,aRamanspec-troscopyresultforthetribologicallayerfromthefirstretrievalisshowninFig.5.AbroadGlinecorrespondingtothestretchvibrationofsp2bondingwaspresent,togetherwithastrongDlinearound1383cm?1correspondingtothebreathingvibrationindisorderedsp2carbon(26).Forcomparison,boththeGandDlineswereabsentinthedriedserumonaCoCrMosub-strate(fig.S5).TheG-linepositionofthetribo-logicallayerwas1567cm?1,slightlyshiftedfrom1580cm?1ofgraphitecrystalduetotheforma-tionofnanocrystallites(27).UsingtheanalysisofcarbonstructuresbyFerrariandRobertson(27),thetribologicallayerwasinbetweennanocrystal-linegraphiteandamorphoussp2carbon[stage2in(27)]andwasclosertothenanocrystallineside.Thefractionofsp2bondingwasdeterminedfromtheG-linepositiontobe>80osedontheplotsin(27,28).NotethatthepresenceofabroadDlinealsoindicatedtheexistenceofdisorderedgraphiticcarbon.Thegraphiticdomainsize(29),La,canbecalculatedfromtherelativeintensities(21,29,30)as4.5nm,consistentwiththeHREMobservations.

NIntensity (counts)C:N:O=1:0.17:0.46O82% sp2dried bovine serumC:O=1:0.07tribological layergraphite250300350400450500550Energy Loss (eV)

Fig.4.HREMimageofthetribologicallayer.Short-rangeorderedgra-phiticmaterialwithagrainsizeofafewnano-metersispresent.Thein-setpowerspectrumshowsthatthedominantspacingis~0.34nm.

Raman Intensity (counts)Fig.5.RamanspectrumofthetribologicallayerforaCoCrMohipimplantafterbackgroundsub-tractionshowingtheG(red)andD(blue)lines.ThedatahasfitusingtwoGaussianpeaks(purple).

1250010000750050002500

01200

G

D

130014001500160017001800

Raman Shift (cm-1)

www.sciencemag.orgSCIENCEVOL33423DECEMBER20111689

REPORTS

SimilarRamanspectratoFig.5indicatingagraphitictribologicallayerwerefoundatdif-ferentlocationsofthefirstretrievalandfromfourotherretrievals[bothwroughtandcastalloys(21)],aswellasinpin-on-balltests.SpatiallyresolvedRamanimaging(fig.S6)indicatedadefinitivecorrelationbetweenwherethegra-phiticRamansignalcamefromandwherethetribologicallayerwaspresent.Itshouldbenotedthatthereisextensiveliteratureevidenceforacomparabletribologicallayerinmanyotherre-trievalsandinsimulatortests.

Allofthedataindicatethatthetribologicalmaterialhasagraphiticcontentsimilartopar-tiallygraphiticcarbon.Althoughwecannotruleoutasmallimpurityofproteininthetribologicallayer,thefactthatthereisminimalnitrogen,thatahighsp2fractionprecludesahighhydrogencontent,plusthecorrelationoftheRamanandHREMdataastothestructureallowustoinferthatthefractionofproteinislessthan5%,andanyproteinpresentshouldbeconsideredaspartiallydegradedratherthandenaturedprotein.Therearethreeimmediateconsequencesofthisresult—thefirsttwoareimportantforortho-pedicapplications,whereastheotherisanissueforconcern.Thefirstisthatgraphiteisastandardsolidlubricantthatisknowntoperformwellinthepresenceofwater(31,32)andshouldoperatesimilarlyinvivo.Inthetribologicalregion,itwillservethispurpose,reducingfrictionaswellascorrosionandwear,similartosolidlubricantsinanengine.Morethanjustflash-heatingorfric-tionalshearofproteinsisleadingtothislayer;insteadmajorchemicalchangesaretakingplacethathavebeenhintedatinthedegradationproductanalysesmentionedearlier.Althoughwedonotknowtheprecisemechanismwherebythegraphiticmaterialisformed,itisknownthatmanytransitionmetals(here,probablycobalt)willactascatalyststoeliminatewaterorammoniafromorganicma-terials(33,34),similartothewell-knowncokingofheterogeneouscatalysts;freshmetalsurfacesexposedbywearshouldbegoodcatalysts.Asacrudeestimate,thecompositionofalbuminisC3076H4833N821O919S42,andeliminatingwater,ammonia(andhydrogensulfide)wouldgiveanominalcompositionofC3076H448,whichiscom-parabletotypicalhydrogenatedcarbonfilmsusedtoreducefriction.Thereisextensiveevi-dencefortheformationofgraphiticmaterialfromothercarbonallotropesduringsliding,soacon-versionfrommoredisorderedoramorphouscar-bontoagraphiticmaterialisexpected.

Thesecondconsequenceisthatthereisnowadesigntargetforimprovingimplants.Forinstance,onecoulddesigntoimproveadhesionofthegra-phiticlayertothemetalortopromoteitsformationbychangingthealloycompositionandthusreduc-ingwear,friction,andcorrosion.Biocompatibilityofanyadditiveswillbeanissue,sotheproblemisnotassimpleasdesigningabetteralloy.

Lastly,asacaution,wearofthisgraphiticmaterialisgoingtoleadtotheformationofgra-phiticfragmentsinthepseudosynovialfluids,

andthesecanbetransportedtocellsinthenearbyregions.Therecentfinding(4)ofalackofcor-relationbetweentissuedamageandvolumetricwearratesuggeststhatfactorsotherthancobalt-alloyweardebrismaybecontributingtoadversetissuereactions.Graphiticcarbonmaybeonesuchfactor;furtherresearchisneeded.

Insummary,wehavepresentedclearevi-dencethatthetribologicallayerinMoMhipreplacementsisprimarilygraphiticcarbon.Thismaterialformsalayerthatreducesfrictionaswellaswearandcorrosionandsuggestsarouteforthedesignofimprovedimplants,althoughtheremightbephysiologicalimplicationsasso-ciatedwithgraphiticweardebrisinpatients.

ReferencesandNotes

1.M.W.Brault,J.Hootman,C.G.Helmick,K.A.Theis,B.S.Armour,Morb.Mortal.Wkly.Rep.58,421(2009).2.OrganisationforEconomicCo-operationand

Development(OECD)/EuropeanUnion,HealthataGlance:Europe2010(OECDPublishing,Paris,2010).3.K.J.Bozicetal.,J.BoneJointSurg.Am.91,128(2009).4.D.J.Langtonetal.,J.BoneJointSurg.Br.93-B,164(2011).5.S.A.Jacobsson,K.Djerf,O.Wahlstr?m,Clin.Orthop.Relat.Res.329,S60(1996).

6.M.A.Wimmer,J.Loos,R.Nassutt,M.Heitkemper,A.Fischer,Wear250,129(2001).

7.D.Dowson,C.M.McNie,A.A.J.Goldsmith,Proc.Inst.Mech.Eng.C214,75(2000).

8.S.C.Scholes,A.Unsworth,Proc.Inst.Mech.Eng.H214,49(2000).

9.S.C.Scholes,A.Unsworth,Proc.Inst.Mech.Eng.H220,687(2006).

10.A.Unsworth,Phys.Med.Biol.23,253(1978).11.M.A.Wimmer,C.Sprecher,R.Hauert,G.Tager,

A.Fischer,Wear255,1007(2003).

12.Y.Yan,A.Neville,D.Dowson,J.Phys.D39,3206(2006).13.M.P.Heuberger,M.R.Widmer,E.Zobeley,R.Glockshuber,

N.D.Spencer,Biomaterials26,1165(2005).

14.M.A.Wimmeretal.,J.Orthop.Res.28,436(2010).15.V.K.Maskiewicz,P.A.Williams,S.J.Prates,

J.G.Bowsher,I.C.Clarke,J.Biomed.Mater.Res.BAppl.Biomater.94,429(2010).

16.H.Mishina,M.Kojima,Wear265,655(2008).

17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.

F.W.Chanetal.,Clin.Orthop.Relat.Res.333,96(1996).H.McKellopetal.,Clin.Orthop.Relat.Res.329,S128(1996).J.Finketal.,SolidStateCommun.47,687(1983).S.D.Berger,D.R.Mckenzie,P.J.Martin,Philos.Mag.Lett.57,285(1988).

MaterialsandmethodsareavailableassupportingmaterialonScienceOnline.

A.M’ndange-Pfupfu,O.Eryilmaz,A.Erdemir,L.D.Marks,DiamondRelat.Mater.20,1143(2011).

J.J.Cuomo,J.P.Doyle,J.Bruley,J.C.Liu,Appl.Phys.Lett.58,466(1991).

D.L.Pappasetal.,J.Appl.Phys.71,5675(1992).R.F.Egerton,ElectronEnergy-LossSpectroscopyintheElectronMicroscope(PlenumPress,NewYork,ed.2,1996).J.Robertson,Mater.Sci.Eng.Rep.37,129(2002).A.C.Ferrari,J.Robertson,Phys.Rev.B61,14095(2000).A.C.Ferrari,J.Robertson,Philos.Trans.R.Soc.LondonSer.A362,2477(2004).

F.Tuinstra,J.L.Koenig,J.Chem.Phys.53,1126(1970).P.K.Chu,L.H.Li,Mater.Chem.Phys.96,253(2006).S.K.Field,M.Jarratt,D.G.Teer,Tribol.Int.37,949(2004).B.K.Yen,Wear192,208(1996).

J.L.Woodman,J.Black,S.A.Jiminez,J.Biomed.Mater.Res.18,99(1984).

A.Kocijan,I.Milosev,B.Pihlar,J.Mater.Sci.Mater.Med.14,69(2003).

Acknowledgments:ThisworkwasfundedbytheNIHongrantnumber1RC2AR058993-01.NorthwesternUniversityAtomicandNanoscaleExperimentalCenterandBiologicalImagingFacilityareacknowledgedfortheuseoftheirfacilities.WethankK.Shull,K.Wahl,andR.LeapmanforinvaluablecommentsandM.Morlock,Hamburg,Germany,forretrievals.Theauthorshavenocompetingfinancialinterests.Asfulldisclosureofrealorpotentialconflictsofinterest,J.J.J.hasfundingfromZimmerHoldings,Medtronics,andSpinalMotion;consultsforZimmer,Medtronics,JohnsonandJohnson,SpinalMotion,andImplantProtection;andhasstockoptionsinImplantProtection.A.F.hasfundingfromZimmerWinterthurandconsultsforZimmer,AbbotVascular,andCeramtec.

SupportingOnlineMaterial

www.sciencemag.org/cgi/content/full/334/6063/1687/DC1MaterialsandMethodsFigs.S1toS6

12September2011;accepted1November201110.1126/science.1213902

EvidencefromNumericalExperimentsforaFeedbackDynamoGeneratingMercury’sMagneticField

DanielHeyner,1*JohannesWicht,2?NataliaGómez-Pérez,3?DieterSchmitt,2Hans-UlrichAuster,1Karl-HeinzGlassmeier1,2TheobservedweaknessofMercury’smagneticfieldposesalong-standingpuzzletodynamotheory.Usingnumericaldynamosimulations,weshowthatitcouldbeexplainedbyanegativefeedbackbetweenthemagnetosphericandtheinternalmagneticfields.Withoutfeedback,asmallinternalfieldwasamplifiedbythedynamoprocessuptoEarth-likevalues.Withfeedback,thefieldstrengthsaturatedatamuchlowerlevel,compatiblewiththeobservationsatMercury.TheclassicalsaturationmechanismviatheLorentzforcewasreplacedbytheexternalfieldimpact.Theresultingsurfacefieldwasdominatedbyunevenharmoniccomponents.ThiswillallowthefeedbackmodeltobedistinguishedfromothermodelsonceamoreaccuratefieldmodelisconstructedfromMErcurySurface,SpaceENvironment,GEochemistry,andRanging(MESSENGER)andBepiColombodata.

I

nMarch2011,theMErcurySurface,SpaceENvironment,GEochemistry,andRanging(MESSENGER)mission(1)enteredorbit

VOL334

SCIENCE

aroundMercury.Oneofitsobjectivesistoex-ploretheplanet’smagneticfield,whichispre-sumedtobegeneratedbyadynamooperating

169023DECEMBER2011www.sciencemag.org