单级直齿圆柱齿轮减速器设计说明书(内嵌CAD图纸) 联系客服

发布时间 : 星期三 文章单级直齿圆柱齿轮减速器设计说明书(内嵌CAD图纸)更新完毕开始阅读5cdf3c31783e0912a3162a4e

1)齿轮—蜗杆二级减速器;2)圆柱齿轮—圆锥齿轮—圆柱齿轮三级减速器。 这些减速器都具有以下结构特点:

——在箱体上不沿齿轮或蜗轮轴线开设剖分面。为了便于传动零件的安装,在适当部位

有较大的开孔。

——在输入轴和输出轴端不采用传统的法兰式端盖,而改用机械密封圈;在盲孔端则装有冲压薄壁端盖。

——输出轴的尺寸加大了,键槽的开法和传统的规定不同,甚至跨越了轴肩,有利于充分发挥轮毂的作用。

和传统的减速器相比,这些结构上的改进,既可简化结构,减少零件数目,同时又改善了制造工艺性。但设计时要注意装配的工艺性,要提高某些装配零件的制造精度。

15.4减速器润滑 15.4.1传动的润滑

圆周速度u≤12m/s一15m/s的齿轮减速器广泛采用油池润滑,自然冷却。为了减少齿轮运动的阻力和油的温升,浸入油中的齿轮深度以1—2个齿高为宜。速度高的还应该浅些,建议在0.7倍齿高左右,但至少为10mm。速度低的(0.5m/s一0.8m/s)也允许浸入深些,可达到1/6的齿轮半径;更低速时,甚至可到1/3的齿轮半径。润滑圆锥齿轮传动时,齿轮浸入油中的深度应达到轮齿的整个宽度。对于油面有波动的减速器(如船用减速器),浸入宜深些。在多级减速器中应尽量使各级传动浸入油中深度近予相等。如果发生低速级齿轮浸油太深的情况,则为了降低其探度可以采取下列措施:将高速级齿轮采用惰轮蘸油润滑;或将减速器箱盖和箱座的剖分面做成倾斜的,从而使高速级和低速级传动的浸油深度大致相等。 ·. ’

减速器油池的容积平均可按1kW约需0.35L一0.7L润滑油计算(大值用于粘度较高的油),同时应保持齿轮顶圆距离箱底不低于30mm一50mm左右,以免太浅时激起沉降在箱底的油泥。减速器的工作平衡温度超过90℃时,需采用循环油润滑,或其他冷却措施,如油池润滑加风扇,油池内装冷却盘管等。循环润滑的油量一般不少于0.5L/kW。圆周速度u>12m/s的齿轮减速器不宜采用油池润滑,因为:1)由齿轮带上的油会被离心力甩出去而送不到啮合处;2)由于搅油会使减速器的温升增加;3)会搅起箱底油泥,从而加速齿轮和轴承的磨损;4)加速润滑油的氧化和降低润滑性能等等。这时,最好采用喷油润滑。润滑油从自备油泵或中心供油站送来,借助管子上的喷嘴将油喷人轮齿啮合区。速度高时,对着啮出区喷油有利于迅速带出热量,降低啮合区温度,提高抗点蚀能力。速度u≤20心s的齿轮传动常在油管上开一排直径为4mm的喷油孔,速度更高时财应开多排喷油孔。喷油孔的位置还应注意沿齿轮宽度均匀分布。喷油润滑也常用于速度并不很高而工作条件相当繁重的重型减速器中和需要用大量润滑油进行冷却的减速器中。喷油润滑需要专门的管路装置、油的过滤和冷却装置

20

以及油量调节装置等,所以费用较贵。此外,还应注意,箱座上的排油孔宜开大些,以便热油迅速排出。

蜗杆圆周速度在10m/s以下的蜗杆减速器可以采用油池润滑。当蜗杆在下时,油面高度应低于蜗杆螺纹的根部,并且不应超过蜗杆轴上滚动轴承的最低滚珠(柱)的中心,以免增加功率损失。但如满足了后一条件而蜗杆未能浸入油中时,则可在蜗杆轴上装一甩油环,将油甩到蜗轮上以进行润滑。当蜗杆在上时,则蜗轮浸入油中的深度也以超过齿高不多为限。蜗杆圆周速度在10m/s以上的减速器应采用喷油润滑。喷油方向应顺着蜗杆转入啮合区的方向,但有时为了加速热的散失,油也可从蜗杆两侧送人啮合区。齿轮减速器和蜗轮减速器的润滑油粘度可分别参考表选取。若工作温度低于0℃,则使用时需先将油加热到0℃以上。蜗杆上置的,粘度应适当增大。

15.4,2轴承的润滑

如果减速器用的是滚动轴承,则轴承的润滑方法可以根据齿轮或蜗杆的圆周速度来选择:

——圆周速度在2m/s一3n/s以上时,可以采用飞溅润滑。把飞溅到箱盖上的油,汇集到箱体剖分面上的油沟中,然后流进轴承进行润滑。飞溅润滑最简单,在减速器中应用最广。这时,箱内的润滑油粘度完全由齿轮传动决定。

——圆周速度在2m/s~3m/s以下时,由于飞溅的油量不能满足轴承的需要,所以最好采用刮油润滑,或根据轴承转动座圈速度的大小选用脂润滑或滴油润滑。利用刮板刮下齿轮或蜗轮端面的油,并导人油沟和流人轴承进行润滑的方法称为刮油润滑。

采用脂润滑时,应在轴承内侧设置挡油环或其他内部密封装置,以免油池中的油进入轴承稀释润滑脂。

滴油润滑有间歇滴油润滑和连续滴油润滑两种方式。为保证机器起动时轴承能得到一定量的润滑油,最好在轴承内侧设置一圆缺形挡板,以便轴承能积存少量的油。挡板高度不超过最低滚珠(柱)的中心。经常运转的减速器可以不设这种挡板。

——转速很高的轴承需要采用压力喷油润滑。

如果减速器用的是滑动轴承,由于传动用油的粘度太高不能在轴承中使用,所以轴承润滑就需要采用独自的润滑系统。这时应根据轴承的受载情况和滑动速度等工作条件选择合适的润滑方法和油的粘度。

(上一章) (返回主页) (下一章) 第16章 轴 ㈠基本内容:

1. 轴的分类;

21

2.轴的结构设计; 3.轴的强度计算; 4.轴的刚度计算; 5.轴的临界转速; ㈡重点与难点:

1重点:轴的结构设计;轴的强度计算方法;轴毂联接. 2难点:轴的结构设计;轴的疲劳强度校核计算. ㈢

㈠基本内容:

1. 轴的分类; 2.轴的结构设计; 3.轴的强度计算; 4.轴的刚度计算; 5.轴的临界转速; ㈡教学重点与难点:

1重点:轴的结构设计;轴的强度计算方法;轴毂联接. 2难点:轴的结构设计;轴的疲劳强度校核计算. ㈢教学基本要求:

1了解轴的类型、特点、应用;轴的材料及选用;

2了解轴的疲劳强度校核计算(安全系数法),轴的刚度计算,轴的振动及稳定性的概念; 3复习轴毂联接;

4掌握轴的扭转强度和弯扭组合强度计算; 5掌握轴的结构设计及提高轴的强度的措施; 基本要求:

22

1了解轴的类型、特点、应用;轴的材料及选用;

2了解轴的疲劳强度校核计算(安全系数法),轴的刚度计算,轴的振动及稳定性的概念; 3复习轴毂联接;

4掌握轴的扭转强度和弯扭组合强度计算; 5掌握轴的结构设计及提高轴的强度的措施;

16.1 概述

作回转运动的零件都要装在轴上来实现其回转运动,大多数轴还起着传递转矩的作用。轴要用滑动轴承或滚动轴承来支承。常见的轴有直轴和曲轴,曲轴主要用于作往复运动的机械中。本章只讨论直轴。 16.1.1轴的分类

根据轴的承载情况可分为转轴、心轴和传动轴三类。只承受弯矩,不承受转矩的轴称为“心轴”;只承受转矩,不承受弯矩的轴称为“传动轴”;同时承受弯矩和转矩的轴称为“转轴”。 16.1.2 轴的材料

轴的材料主要采用碳素钢和合金钢。

常用的碳素钢有30—50钢,最常用的是45钢。为保证其力学性能,应进行调质或正火处理。不重要的或受力较小的轴以及一般传动轴可以使用Q235—Q275钢。 ’ 合金钢具有较高的机械强度,可淬性也较好,可以在传递大功率并要求减少质量和提高轴颈耐磨性时采用。常用的合金钢有12CrNi2、12CrNi3、20Cr、40Cr和38SiMnMo等。 轴的材料也可采用合金铸铁或球墨铸铁。轴的毛坯是铸造成型的,所以易于得到更合理的形状。这些材料吸振性较高,可用热处理方法获得所需的耐磨性,对应力集中敏感性也较低。因铸造品质不易控制;故可靠性不如钢制轴。 16.1.3 轴设计的主要问题

在一般情况下,轴的工作能力决定于它的强度和刚度,对于机床主轴,后者尤为重要。高速转轴则还决定于它的振动稳定性;在设计轴时,除应按工作能力准则进行设计计算或校核计算外,在结构设计上还须满足其他一系列的要求,例如:1)多数轴上零件不允许在轴上作轴向移动,需要用轴向固定的方法使它们在轴上有确定的位置;2)为传递转矩,轴上零件还应作周向固定;3)对轴与其他零件(如滑动轴承、移动齿轮)间有相对滑动的表面应有耐磨

23