(强烈推荐)基于FPGA的等精度数字频率计设计毕业论文 联系客服

发布时间 : 星期日 文章(强烈推荐)基于FPGA的等精度数字频率计设计毕业论文更新完毕开始阅读5df4a866effdc8d376eeaeaad1f34693dbef1074

进行了修订,从更高的抽象层次和系统描述能力上扩展VHDL的内容,公布了新版本的VHDL,即ANSIIEEE VHDL主要用于描述数字系统的结构、行为、功能和接口,非常适用于可编程逻辑芯片的应用设计。与其它的HDL相比,VHDL具有更强的行为描述能力,从而决定了它成为系统设计领域最佳的硬件描述语言。强大的行为描述能力是避开具体的器件结构,从逻辑行为上描述和设计大规模电子系统的重要保证。就目前流行的EDA工具和VHDL综合器而言,将基于抽象的行为描述风格的VHDL程序综合成为具体的FPGA和CPLD等目标器件的网表文件己不成问题。VHDL语言在硬件设计领域的作用将与C和C++在软件设计领域的作用一样,在大规模数字系统的设计中,它将逐步取代如逻辑状态表和逻辑电路图等级别较低的繁琐的硬件描述方法,而成为主要的硬件描述工具,它将成为数字系统设计领域中所有技术人员必须掌握的一种语言。VHDL和可编程逻辑器件的结合作为一种强有力的设计方式,将为设计者的产品上市带来创纪录的速度。

1.4 QuartusII概述

QuartusII是Altera提供的FPGACPLD开发集成环境,Altera是世界上最大的可编程逻辑器件供应商之一。QuartusII在21世纪初推出,是Altera前一代FPGACPLD集成开发环境MAX+PLUSII的更新换代产品,其界面友好,使用便捷。它提供了一种与结构无关的设计环境,使设计者能方便地进行设计输入、快速处理和器件编程。

Altera的QuartusII提供了完整的多平台设计环境,能满足各种特定设计的需要,也是单芯片可编程系统(SOPC)设计的综合性环境和SOPC开发的基本设计工具,并为Altera DSP开发包进行系统模型设计提供了集成组合环境。QuartusII设计工具完全支持VHDL、Verilog的设计流程,其内部嵌有VHDL、Verilog逻辑综合器。QuartusII也可利用第三方的综

合工具。同样,QuartusII具备仿真功能,同时也支持第三方的仿真工具,如ModelSim。此外,QuartusII与MATLAB和DSP Builder结合,可以进行基于FPGA的DSP系统开发和数字通信模块的开发。

QuartusII包括模块化的编译器。编译器包括的功能模块有分析综合器(Analsis & Synthesis)、适配器(Fitter)、装配器(Assembler)、时序分析器(Timing Analyzer)、设计辅助模块(Design Assistant)、EDA网表文件生成器(EDA Netlist Writer)、编辑数据接口(Compiler Database Interface)等。可以通过选择Start Compilation来运行所有的编译器模块,也可以通过选择Start单独运行各个模块。还可以通过选择Compiler Tool(Tools菜单),在Compiler Tool窗口中运行该模块来启动编译器模块。在Compiler Tool窗口中,可以打开该模块的设置文件或报告文件,或打开其他相关窗口。

此外,QuartusII还包含许多十分有用的LPM(Library of Parameterized Modules)模块,它们是复杂或高级系统构建的重要组成部分,在SOPC设计中被大量使用,也可以与QuartusII普通设计文件一起使用。Altera提供的LPM函数均基于Altera器件的结构做了优化设计。在许多实用情况中,必须使用宏功能模块才可以使用一些Altera特定器件的硬件功能,如各类片上存储器、DSP模块、LVDS驱动器、PLL以及SERDES和DDIO电路模块等。

QuartusII编译器支持的硬件描述语言有VHDL(支持VHDL’87及VHDL’97标准)、Verilog HDL及AHDL(Altera HDL)。

QuartusII支持层次化设计,可以在一个新的编辑输入环境中对使用不同输入设计方式完成的模块(元件)进行调用,从而解决了原理图与HDL混合输入设计的问题。在设计输入之后,QuartusII的编译器将给出设计输入的错误报告。可以使用QuartusII带有的RTL Viewer观察综合

后的RTL图。

QuartusII作为目前CPLDFPGA开发工具理想的综合、仿真软件,具有许多优良的特性。

(1)继承了MAX+PLUSII的优点

图形输入依然形象,图形符号与MAX+PLUSII一样符合数字电路的特点,大量74系列器件符号使能初学者在较短的时间里利用图形编辑设计出需要的电路。文本输入几乎和MAX+PLUSII相同,而且在文本的每一行都有行号,使用语言编写的电路清晰易读。低层编辑仍然采用Chipview方式,引脚排列位置映射了实际器件引脚,只要简单地鼠标拖放即可完成低层编辑。

(2)支持的器件更多

除了支持MAX3000、MAX7000、FLEX6000、FLEX10KE、ACEX1K等MAX+PLUSII已经支持的器件外,还支持PEX20K、APEX20KE、AREXII、EXCALIBUR-ARM、Mercury、Stratix等MAX+PLUSII下无法支持的大容量高性能的器件。 (3)增加了网络编辑功能

QuartusII支持一个工作组环境下的设计要求,包括支持基于Internet的协作设计,与Cadence、ExemplarLogi、MentorGraphics、Synopsys和Synplicity等EDA供应商的开发工具相兼容。 (4)提升了调试能力

QuartusII增加了一个新的快速适配编译选项,可保留最佳性能的设置,加快了编译过程,可缩短50%的编译时间,对设计性能的影响小。 (5)不足之处

软件结构庞大,使用复杂,不如MAX+PLUSII简单、易学易用。

2. 频率测量

2.1 数字频率计工作原理概述

数字频率计的设计原理实际上是测量单位时间内的周期数。 这种方法免去了实测以前的预测,同时节省了划分频段的时间,克服了原来高频段采用测频模式而低频段采用测周期模式的测量方法存在换挡速度慢的缺点。

采用一个标准的基准时钟,在单位时间(1s)里对被测信号的脉冲数进行计数,即为信号的频率。由于闸门的起始和结束时刻对于信号来说是随机的,将会有一个脉冲周期的量化误差。进一步分析测量准确度:设待测信号脉冲周期为Tx,频率为Fx,当测量时间为T=1s时,测量准确度为&=TxT=1Fx。由此可知直接测频法的测量准确度与信号的频率有关:当待测信号频率较高时,测量准确度也较高,反之测量准确度也较低。因此直接测频法只适合测量频率较高的信号,不能满足在整个测量频段内的测量精度保持不变的要求。

为克服低频段测量的不准确问题,采用门控信号和被测信号对计数器的使能信号进行双重控制,大大提高了准确度。当门控信号为1时,使能信号并不为1,只有被测信号的上升沿到来时,使能端才开始发送有效信号,两个计数器同时开始计数。当门控信号变为0时,使能信号并不是立即改变,而是当被测信号的下一个上升沿到来时才变为0,计数器停止计数。因此测量的误差最多为一个标准时钟周期。当采用100MHz的信号作为标准信号时,误差最大为0.01μs。

计算每秒钟内待测信号脉冲个数。这就要求计数使能信号TSTEN能产生一个1秒脉宽的周期信号,并对频率计的每一计数器cnt10的ENA使能端进行同步控制。当TSTEN为高电平时,允许计数;低电平时,停止