基于51单片机的无线温度检测系统--参考论文--学位论文 联系客服

发布时间 : 星期日 文章基于51单片机的无线温度检测系统--参考论文--学位论文更新完毕开始阅读5f531552905f804d2b160b4e767f5acfa0c7835d

1 绪论

1.1 选题的背景

随着现代信息技术的飞速发展和传统工业改造的逐步实现.能够独立工作的温度检测和显示系统应用于诸多领域。传统的温度检测以热敏电阻为温度敏感元件。热敏电阻的成本低,但需后续信号处理电路,而且可靠性相对较差,测温准确度低,检测系统也有一定的误差。与传统的温度计相比,这里设计的无线温度检测系统具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。选用AT89S52单片机作为主控制器件,DSl8B20作为测温传感器通过LCD1602并行传送数据,实现温度显示。通过DSl8B20直接读取被测温度值,进行数据转换,该器件的物理化学性能稳定,线性度较好,在-55℃~125℃最大线性偏差小于0.1℃。该器件可直接向单片机传输数字信号,便于单片机处理及控制。另外,该温度计还能直接采用测温器件测量温度,从而简化数据传输与处理过程。

1.2 无线温度检测系统简介

1.2.1 无线温度检测系统的特征

温度是我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,无线温度检测系统的出现可以让人们直观的了解自己想知道的温度到底是多少度。

无线温度检测系统采用进口芯片组装精度高、高稳定性,误差≤0.5%, 内电源、微功耗、不锈钢外壳,防护坚固,美观精致。无线温度检测系统采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。

无线温度检测系统采用温度敏感元件也就是温度传感器(如铂电阻,热电偶,半导体,热敏电阻等),将温度的变化转换成电信号的变化,如电压和电流的变化,温度变化和电信号的变化有一定的关系,如线性关系,一定的曲线关系等,这个电信号可以使用模数转换的电路即AD转换电路将模拟信号转换为数字信号,数字信号再送给处理单元,如单片机或者PC机等,处理单元经过内部的软件计算将这个数字信号和温度联系起来,成为可以显示出来的温度数值,如25.0摄氏度,然后通过显示单元,如

LED,LCD或者电脑屏幕等显示出来给人观察。这样就完成了无线温度检测系统的基本测温功能。无线温度检测系统根据使用的传感器的不同,AD转换电路,及处理单元的不同,它的精度,稳定性,测温范围等都有区别,这就要根据实际情况选择符合规格的无线温度检测系统。 1.2.2 设计实现的目标

1) 采集测温范围为-55~+120 ℃. 2) 温度精度在0.1 ℃;误差±0.5℃. 3) 显示模块,采用1602液晶显示. 4) 通过NRF24L01无线发送温度数据.

5) 通过NRF24L01无线接收温度数据并显示在液晶屏上.

2 无线温度检测系统的方案设计

2.1 设计方案论证与比较

2.1.1 显示电路方案

方案一:采用数码管动态显示

使用七段LED数码管,采用动态显示的方法来显示各项指标,此方法虽然价格成本低,但是显示单一,且功耗较大。

方案二:采用LCD液晶显示

采用1602 LCD液晶显示,此方案显示内容相对丰富,且价格不高。 综合上述原因,采用方案二,使用LCD液晶作显示电路。 2.1.2 测温电路方案

方案一:采用模拟温度传感器测温

由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

方案二:采用数字温度传感器

进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

综合考虑,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

2.1.3 无线传输方案 方案一

nRF24L01是一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,多种低功率工作模式(掉电模式和空闲模式)使节能设计更方便。

nRF24L01主要特性如下: GFSK调制: 硬件集成OSI链路层;

具有自动应答和自动再发射功能; 片内自动生成报头和CRC校验码; 数据传输率为l Mb/s或2Mb/s; SPI速率为0 Mb/s~10 Mb/s; 125个频道:

与其他nRF24系列射频器件相兼容; QFN20引脚4 mm×4 mm封装; 供电电压为1.9 V~3.6 V。

nRF24L01的CE,CSN,SCK,MOSI,MISO.IRQ引脚可接 STC 89C52的任意端口,但需在编程时注意

nRF24L01工作模式

通过配置寄存器可将nRF241L01配置为发射、接收、空闲及掉电四种工作模式,如表所示。

8 掉电 0 - - -

待机模式1主要用于降低电流损耗,在该模式下晶体振荡器仍然是工作的; 待机模式2则是在当FIFO寄存器为空且CE=1时进入此模式; 待机模式下,所有配置字仍然保留。

在掉电模式下电流损耗最小,同时nRF24L01也不工作,但其所有配置寄存器的值仍然保留。

nRF24L01 引脚功能及描述

nRF24L01的封装及引脚排列如图所示。各引脚功能如下:

图2.6 nRF24L01封装图 CE:使能发射或接收;

CSN,SCK,MOSI,MISO:SPI引脚端,微处理器可通过此引脚配置nRF24L01: IRQ:中断标志位; VDD:电源输入端; VSS:电源地;

XC2,XC1:晶体振荡器引脚;

VDD_PA:为功率放大器供电,输出为1.8 V; ANT1,ANT2:天线接口;

IREF:参考电流输入。