浅谈捷达轿车电控燃油喷射系统 - 图文 联系客服

发布时间 : 星期六 文章浅谈捷达轿车电控燃油喷射系统 - 图文更新完毕开始阅读60e1e6ef770bf78a652954df

日照职业技术学院汽车电子学院毕业论文

进气量由驾驶员通过加速踏板操纵节气门来控制。节气门开度不同,进气量也不同,同时进气歧管内的真空度也不同。在同一转速下,进气歧管真空度与进气量有一定关系。

进气压力传感器可将进气歧管内真空度的变化转变成电信号的变化,并传送给ECU,ECU根据进气歧管真空度的大小计算出发动机进气量。

3) 喷油量与喷油时刻的确定

喷油量由ECU控制。ECU根据进气压力传感器测量得到的信号计算出进气量,再根据分电器中的曲轴位置传感器测得的信号的计算出发动机转速,根据进气量和转速计算出相应的基本喷油量;ECU控制各缸喷油器在每次进气行程开始之前喷油一次,并通过控制每次喷油的持续时间来控制喷油量。

喷油持续时间越长,喷油量就越大。一般每次喷油的持续时间为2ms到10ms。各缸喷油器每次喷油的开始时刻则由ECU根据曲轴位置传感器测得的1缸上止点的位置来控制。由于这种类型的燃油喷射系统的每个喷油器在发动机一个工作循环中只喷油一次,故属于间歇喷射方式。

4)不同工况下的控制模式

电控燃油喷射系统能根据各个传感器测得的发动机各种运转参数,判断发动机所处的工况,选择不同模式的程序控制发动机的运转,实现启动加浓、暖机加浓、加速加浓、全负荷加浓、减速调稀、强制怠速断油、自动怠速控制等功能。

D型EFI系统具有结构简单、工作可靠等优点,但由于采用压力作为控制喷油量的主要因素,因此,存在这样的缺点:在汽车突然制动或下坡行驶中节气门关闭时,加速反应效果不良;当大气状况发生较大变化时,会影响控制精度。

现代汽车使用的D型EFI系统都经过了改进,即采用运算速度快、内存容量大的ECU,大大提高了控制精度,控制的功能也更加完善。这种系统通常用于中档车型上,如丰田HIACE小客车、丰田CROWN轿车等。

2.2.2 L型EFI系统

L型EFI系统是在D型EFI系统的基础上,经改进而形成的。它是目前汽车上应用最广泛的燃油喷射系统。L型EFI系统的构造和工作原理与D型EFI系统基本相同,但它以空气流量计代替D型EFI系统中的进气压力传感器,可直接测量发动机进气量,提高了控制精度。

典型的L型EFI系统的结构图2-6所示。

- 20 -

日照职业技术学院汽车电子学院毕业论文

图2-6 热线式电控汽油机燃油喷射系统

2.2.3 燃油喷射控制

1) 喷油正时

多点喷射分为同时喷射,即各缸喷油时刻相同;分组喷射,即多缸发动机分为若干组进行喷射,同一组各缸同时喷油,不同组间顺序喷油;顺序喷射,即按点火顺序要求逐缸喷油。喷油正时就是喷油器什么时候开始喷油的问题。对于多点间歇喷射发动机,喷油正时分为同步喷射和异步喷射。

同步喷射指在既定的曲轴转角进行喷射,在发动机稳定工况的大部分运转时间里,喷油系统以同步方式工作。发动机在启动和加速时,为了保证启动迅速、加速响应快,ECU会根据水温、节气门变化程度适当地增加供油量,此时应采用与曲轴的旋转角度无关的异步喷射。另外,采用卡门旋涡式流量计的发动机,其喷油器的开启时间与其涡流频率同步。

下面介绍同步喷射发动机中的顺序喷射。 顺序喷射

顺序喷射也叫独立喷射。曲轴每转两转,各缸喷油器都轮流喷射一次,且像点火系统一样,按照特定的顺序依次进行喷射。

各缸喷油器分别由微机进行控制。驱动回路数与气缸数目相等。顺序喷射方式由于要知道向哪一缸喷射,因此应具备气缸判别信号,常叫判缸信号。

采用顺序喷射控制时,应具有正时和缸序两个功能,微机工作时,通过曲轴位置传

- 21 -

日照职业技术学院汽车电子学院毕业论文

感器输入的信号,可以知道活塞在上止点前的位置,再与判缸信号相配合,可以确定向上止点运行的是哪一缸,同时应分清该缸是压缩行程还是排气行程。

图2-8 顺序喷射的控制电路

因此当微机根据判缸信号、曲轴位置信号,确定该缸是排气行程且活塞行至上止点前某一喷油位置时,微机输出喷油控制信号,接通喷油器电磁线圈电路,该缸即开始喷射。

顺序喷射可以设立在最佳时间喷油,对混合气的形成十分有利,因此它对提高燃油经济性和降低有害物的排放等有一定好处。尽管顺序喷射方式的控制系统的电路结构及软件都较复杂,但这对日益发展的先进电子技术来讲,是比较容易得到解决的。顺序喷射方式既适合进气歧管喷射,也适用于气缸内喷射。

2) 喷油量的控制

喷油量的控制亦即喷油器喷射时间的控制,要使发动机在各种工况下都处于良好的工作状态,必须精确地计算基本喷油持续时间和各种参数的修正量,其目的是使发动机燃烧混合气的空燃比符合要求。

尽管发动机型号不同,基本喷油持续时间和各种修正量的值不同,但其确定方式和对发动机的影响却是相同的,下面分别予以介绍。

① 启动喷油控制

在发动机启动时,由于转速波动大,无论D系统中的进气压力传感器还是L系统中的空气流量计,都不能精确地测量进气量,进而确定合适的喷油持续时间。

因此,启动时的基本喷油时间不是根据进气量(或进气压力)和发动机转速计算确定的,而是ECU根据启动信号和当时的冷却水温度,由内存的水温-喷油时间图找出相应

- 22 -

日照职业技术学院汽车电子学院毕业论文

的基本喷油时间TP,然后加上进气温度修正时间TA和蓄电池电压修正时间TB,计算出启动时的喷油持续时间。

由THW信号查水温-喷油时间图得出基本喷油时间,根据进气温度传感器THA信号对喷油时间进行修正。

由于喷油器的实际打开时刻较ECU控制其打开时刻存在一段滞后,如图2-14所示,造成喷油量不足,且蓄电池电压越低,滞后时间越长,故需对电压进行修正。

图2-9 喷油滞后

② 启动后的喷油控制

发动机转速超过预定值时,ECU确定的喷油信号持续时间满足下式: 喷油信号持续时间=基本喷油持续时间×喷油修正系数+电压修正值 式中,喷油修正系数是各种修正系数的总和。 (A) 基本喷油时间

D型EFI系统的基本喷油时间可由发动机转速信号(Ne)和进气管绝对压力信号(PIM)确定。D系统的ECU内存有一个基本喷油时间三维图(三元MAP图)。

它表明了与发动机各种转速和进气管压力对应的基本喷油时间。根据发动机转速信号和进气管压力信号确定喷油量,是以进气量与进气管压力成正比为前提的,这一前提只在理论上成立。

实际工作中,进气脉动使充气效率变化,进行再循环的排气量的波动也影响进气量测量的准确度。因此,由MAP图计算的仅为基本喷油时间,ECU还必须根据发动机转速信号(Ne)对喷油时间进行修正。L型EFI系统的基本喷油时间由发动机转速和空气量信

- 23 -