复变函数习题解答(第6章) 联系客服

发布时间 : 星期二 文章复变函数习题解答(第6章)更新完毕开始阅读639ca401a6c30c2259019e84

p269第六章习题(一) [ 7, 8, 9, 10, 11, 12, 13, 14 ]

7. 从?C e i z/√z dz出发,其中C是如图所示之周线(√z沿正实轴取正值),证明:

?(0, +?) cos x/√x dx = ?(0, +?) sin x/√x dx = √(?/2).

【解】| ?C(R) ei z/√z dz | ? ?C(R) | ei z |/R1/2 ds = ?[0, ?/2] | ei ? (cos? + i sin? )|/R1/2 · R d?

Ri= ?[0, ?/2] | e ? R sin? | R1/2 d?

CR? R1/2 ?[0, ?/2] e ? R sin? d?.

由sin? ? 2?/? (??[0, ?/2] ),故 R1/2?[0, ?/2] e ? R sin? d? ? R1/2 ?[0, ?/2] e ? (2R/ ?)? d?

Crri= (?/(2R1/2))(1 – e ? R ) ? ?/(2R1/2).

所以,| ?C(R) ei z/√z dz | ? 0 (as R?+?).

rR而由| ?C(r) ei z/√z dz | ? (?/(2r1/2))(1 – e ? r ) 知| ?C(r) ei z/√z dz | ? 0 (as r? 0+ ). 当r? 0+,R?+?时,

?[r, R] ei z/√z dz = ?[r, R] ei x/√x dx = ?[r, R] (cos x + i sin x)/√x dx ? ?(0, +?) cos x/√x dx + i?(0, +?) sin x/√x dx .

?[r i, R i] ei z/√z dz = ?[r, R] ei (i y)/√(i y) i dy = ?[r, R] e? y e i ?/4/√y dy. = (1 + i )/√2 · ?[r, R] e? y /√y dy = 2(1 + i )/√2 · ?[√r, √R] e? u ^2 du ? (1 + i )√2 · ?(0, +?) e? u ^2 du = (1 + i )√2 · √?/2 = (1 + i )√(?/2). 由Cauchy积分定理,?C ei z/√z dz = 0,故其极限也为0, 所以,?(0, +?) cos x/√x dx + i?(0, +?) sin x/√x dx = (1 + i )√(?/2), 即?(0, +?) cos x/√x dx = ?(0, +?) sin x/√x dx = √(?/2).

8. 从?C √z ln z /(1 + z)2 dz出发,其中C是如图所示之周线,证明:

?(0, +?) √x ln x /(1 + x)2 dx = ?,?(0, +?) √x /(1 + x)2 dx = ?/2.

【解】在割去原点及正实轴的z平面上,√z,ln z都能分出单值解析分支,√z取在正实轴的上岸取正值

C的那个分支,ln z取在正实轴的上岸取实数值的那个

C分支.记f(z) = √z ln z /(1 + z)2 dz.f(z)的有限奇点只L有? 1,且? 1是f(z)的2阶极点.

LRes[√z ln z /(1 + z)2; ? 1] = limz ? ? 1 ((1 + z)2 · f(z))’

= limz ? ? 1 (√z ln z)’ = limz ? ? 1 (((1/2) ln z + 1 )√z/z) = ((1/2) ln (? 1) + 1 )√(? 1)/(? 1) = ? ((1/2) ?i + 1 )i = (1/2) ? ? i.

当r < 1 < R时,?C √z ln z /(1 + z)2 dz

= ?C(r) + ?C(R) + ?L(1) + ?L(2) = 2?i Res[√z ln z /(1 + z)2; ?1] = 2? + ?2 i. ?L(1) √z ln z /(1 + z)2 dz = ?(r, R) √x ln x /(1 + x)2 dx ? ?(0, +?) √x ln x /(1 + x)2 dx (当r? 0+,R?+?时)

?L(2) √z ln z /(1 + z)2 dz = ?(R, r) (?√x )(ln x + 2?i)/(1 + x)2 dx = ?(r, R) (√x ln x)/(1 + x)2 dx + 2?i?(r, R)√x /(1 + x)2 dx

? ?(0, +?) √x ln x /(1 + x)2 dx + 2?i?(0, +?) √x /(1 + x)2 dx (当r? 0+,R?+?时). 因为z · √z ln z /(1 + z)2 ? 0 (当| z |? +?时),

Rr12 1

故?C(R) √z ln z /(1 + z)2 dz? 0 (当R ? +?时). 因为z · √z ln z /(1 + z)2 ? 0 (当| z |? 0时), 故?C(r) √z ln z /(1 + z)2 dz? 0 (当r ? 0时).

所以,?L(1) + ?L(2) ? ?/2 ? i (当r? 0+,R?+?时).

故2?(0, +?) √x ln x /(1 + x)2 dx + 2?i?(0, +?) √x /(1 + x)2 dx = 2? + ?2 i. 所以,?(0, +?) √x ln x /(1 + x)2 dx = ?,?(0, +?) √x /(1 + x)2 dx = ?/2.

9. 证明:I = ?(0, 1) 1/((1 + x 2)(1 ? x 2)1/2) dx = ?/23/2.

C【解】设f(z) = 1/((1 + z 2)(1 ? z 2)1/2),割线[? 1, 1], 在割线的上岸(1 ? z 2)1/2取正值的那一支.

STL因i和? i都是f(z)的一阶极点,故

1-1Res[ f(z); i] = 1/(2z (1 ? z 2)1/2)|z = i = ? i/23/2. LRes[ f(z); i] = 1/(2z (1 ? z 2)1/2)|z = – i = ? i/23/2. 若x在上岸,则f(x) = 1/((1 + x 2)(1 ? x 2)1/2); 若x在下岸,则f(x) = e ? i ?/((1 + x 2)(1 ? x 2)1/2); ?L(1) f(z) dz = ?[– 1 + r, 1 – r] f(x) dx. ?L(2) f(z) dz = ?[– 1 + r, 1 – r] f(x) dx.

因为lim z? –1 (1 + z) f(z) = 0,lim z? 1 (1 ? z) f(z) = 0, 故?S(r) f(z) dz ? 0,?T(r) f(z) dz ? 0 (as r ? 0).

因为lim z? ? z f(z) = 0,故?C(R) f(z) dz ? 0 (as R ? +?).

故?L(1) f(z) dz + ?L(2) f(z) dz ? (2?i)(Res[ f(z); i] + Res[ f(z); ? i]) (as r? 0+,R?+?). 所以2?(– 1, 1) f(x) dx = (2?i)(Res[ f(z); i] + Res[ f(z); ? i]) = (2?i)(? i/23/2) = 2?/23/2. 故?(– 1, 1) f(x) dx = ?/23/2.

10. 证明方程e z ? ? = z ( ? > 1 )在单位圆| z | < 1内恰有一个根,且为实根. 【解】在单位圆周C : | z | = 1上,设z = x + i y,则z ? ? = (x ? ? ) + i y, 故| e z ? ? | = | e (x ? ? ) + i y | = | e x ? ? | < 1 = | z |, 由Rouché定理,N(z ? e z ? ?, C) = N(z, C) = 1. 故z ? e z ? ? = 0在单位圆内恰有一个根.

Rrr12设f(x) = x ? e x ? ?,x??.因f(? 1) = (? 1) ? e ?1 ? ? < 0,f(1) = 1 ? e 1 ? ? > 0, 故 x ? e x ? ? = 0在区间(? 1, 1)内有根.

所以方程e z ? ? = z ( ? > 1 )在单位圆| z | < 1内的唯一根为实根. [原题是错题.例如c = 1/2,? = 2,则?z??,当| z | < 1时,

| c z ? ? | = | exp((z ? ?) Lnc) | = | exp(( z – 2)(ln| 1/2 | + 2k?i)) | = e (2 – z)ln2 > 1 > | z |.]

11. 证明方程e z ? e? z n = 0 ( ? > 1 )在单位圆| z | < 1内有n个根.

【解】在单位圆周C : | z | = 1上,| e z | = e Re(z) ? e | z | ? e < e ? = | e? z n |, 由Rouché定理,N(e? z n ? e z, C) = N(e? z n, C) = N(z n, C) = n.

12. 若f(z)在周线C内部除有一个一阶极点外解析,且连续到C,在C上| f(z) | = 1,证明f(z) = a ( | a | > 1 )在C内部恰好有一个根. 【解】考虑圆K = { z?? | | z – a | < | a | }.

2

因为| (a ? f(z)) ? a | = | f(z) | = 1 < | a |,故a ? f(z)? K.

因ln(a ? f(z))的每个分支,以及他们的导数(ln(a ? f(z))’都在K内解析; 故 i ?C arg (a ? f(z) ) = ?C (ln(a ? f(z))’ dz = 0.

由辐角原理,N(a ? f(z), C) ? P(a ? f(z), C) = (2?)–1?C arg (a ? f(z) ) = 0. 而a ? f(z)在周线C内部除有一个一阶极点外解析,故P(a ? f(z), C) = 1. 因此N(a ? f(z), C) = 1,故f(z) = a ( | a | > 1 )在C内部恰好有一个根.

13. 若f(z)在周线C的内部亚纯且连续到C,试证:

(1) 若z?C时,| f(z) | < 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的极点个数.

(2) 若z?C时,| f(z) | > 1,则方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的零点个数.

【解】(1) 类似第12题,设K = { z?? | | z – 1 | < 1 }.

因| (1 ? f(z)) – 1 | = | f(z) | < 1,故(1 ? f(z))?K. 因 i ?C arg (a ? f(z) ) = ?C (ln(1 ? f(z))’ dz = 0.

故由辐角原理,N(1 ? f(z), C) ? P(1 ? f(z), C) = (2?)–1?C arg (a ? f(z) ) = 0. 而P(1 ? f(z), C) = P( f(z), C),所以,N(1 ? f(z), C) = P( f(z), C).

(2) 因z?C时,| f(z) | > 1,故在C上,恒有f(z) ? 0,即f(z)在C上无零点. 设g(z) = 1/f(z) ( 若z是f(z)极点则规定g(z) = 0,若z是f(z)的零点不定义g(z)). 那么,g(z)在C的内部亚纯且连续到C,并且当z?C时,| g(z) | < 1.

由(1)的结论,在C的内部,方程g(z) = 1的根的个数等于g(z)的极点的个数. 再注意到方程g(z) = 1和方程f(z) = 1在C的内部的根的个数相同, 并且,因为在C的内部,z是f(z)的零点 ? z是g(z)的极点, 故g(z)的极点个数等于f(z)的零点个数;

所以,方程f(z) = 1在C的内部的根的个数,等于f(z)在C的内部的零点个数.

14. 设?(z)在C : | z | = 1内部解析,且连续到C.在C上,| ?(z) | < 1.试证:在C的内部只有一个点z0,使?(z0) = z0.

【解】设f(z) = z,则f(z)在C内部解析且连续到C,在C上,| f(z) | = 1 > | ?(z) |. 由Rouché定理,N( f(z) ? ?(z), C) = N( f(z), C) = 1. 即方程?(z) = z在C的内部只有一个根.

p273第六章习题(二) [ 2, 3, 4, 5 ]

2. 计算积分(1/(2?i))?C 1/(? (? ? z)) d?,其中C为单位圆周| ? | = 1,z?C. 【解】设f(?) = 1/(? (? ? z)).

当| z | > 1时,f(?)在C内部的唯一奇点0是1阶极点, 故(1/(2?i))?C f(?) d? = Res[f(?), 0] = ? 1/z.

当0 < | z | < 1时,f(?)在C内部的两个奇点0, z都是1阶极点, 故(1/(2?i))?C f(?) d? = Res[f(?), 0] + Res[f(?), z] = (? 1/z) + (1/z) = 0. 当| z | = 0时,f(?)在C内部的唯一奇点0是2阶极点, 故(1/(2?i))?C f(?) d? = Res[f(?), 0] = 0.

3

3. 设f(z)在| z | < 1内解析,在| z | ? 1上连续,试证:

(1 ? | z |2) f(z) = (1/(2?i))?C : | ? | = 1 f(?) ((1 ? z*? )/(? ? z)) d?, 其中z属于C的内部.

【解】设g(?) = f(?) ((1 ? z*? )/(? ? z)).

若f(z) = 0,则z是g(?)的解析点,因此g(?)在| ? | < 1内解析,在| ? | ? 1上连续, 故?C : | ? | = 1 g(?) d? = 0,因此等式成立. 若f(z) ? 0,则z是g(?)的一阶极点,故

(1/(2?i))?C : | ? | = 1 f(?) ((1 ? z*? )/(? ? z)) d? = Res[f(?) ((1 ? z*? )/(? ? z)), z] = f(z) (1 ? z*z ) = (1 ? | z |2) f(z).

4. 试证:(z n/n! )2 = (1/(2?i))?C : | ? | = 1 (z n e z? )/(n! ? n + 1 ) d?,这里C是围绕原点的一条周线.

【解】只需要证明,当z ? 0时,z n/n! = (1/(2?i))?C : | ? | = 1 e z? /? n + 1 d?.

由高阶导数公式,(n!/(2?i))?C : | ? | = 1 e z? /? n + 1 d? = (e z? )(n)| ? = 0 = (z n e z? )| ? = 0 = z n. 或(1/(2?i))?C : | ? | = 1 e z? /? n + 1 d? = Res[e z? /? n + 1, 0] = ((e z? )(n)| ? = 0)/n! = z n/n!.

5. 试证(含?的区域的留数定理):设D是??内含有?的区域,其边界C是由有限条互不包含且互不相交的周线C1, C2, ..., Cm组成,又设函数f(z)在D内除去有限个孤立奇点z1, z2, ..., zn及?外解析,且连续到边界C,则

??C f(z) dz = 2?i ( ?1? k ? n Res[f(z), zk] + Res[f(z), ?] ). 【解】?j : 1 ? j ? m,因?不在Cj上,故Cj ? ?中,因此Cj是有界集. 故可取充分大的R > 0,使得周线C1, C2, ..., Cm及在?中的孤立奇点z1, z2, ..., zn都在圆K = { z?? | | z | < R }内.

由留数定理,??K f(z) dz + ??C f(z) dz = 2?i ?1? k ? n Res[f(z), zk]; 而Res[f(z), ?] = ? (1/(2?i))??K f(z) dz,

所以,??C f(z) dz = 2?i ( ?1? k ? n Res[f(z), zk] + Res[f(z), ?] ).

????????·?????????????????????????????????????????? ????√§? ????

??????????§????????????????????????????????? ?m??+,★z????1, ?2, ...?nlim n??,+n???? > 0,? un,? n ? 1 un,m??, ?? > 0,?? > 0,【解】z?[0, 2?] l 2 dx,f(x) = (??, +?)[??, ?]?1 ? k ? n un,[0, 2?]

4