毕业设计主要内容和要求 - 图文 联系客服

发布时间 : 星期一 文章毕业设计主要内容和要求 - 图文更新完毕开始阅读66f9c83aa2161479171128ea

1.1.3逆止阀

逆止阀安装在调节闸阀的上方,其作用是当水泵突然停止运转(如突然停电)时,或者在未关闭调节闸阀的情况下停泵时,能自动关闭,切断水流,使水泵不致受到水力冲击而遭到损坏。

1.1.4 灌引水漏斗、放气栓和旁通管

灌引水漏斗是在水泵初次起动时,向水泵和吸水管中灌引水用。在向水泵和吸水管中灌引水时,要通过放气栓(又叫气嘴)将水泵和吸水管中的空气放掉。

当排水管中有存水时,也可通过旁通管向水泵和吸水管中灌引水,此时要将旁通管上的阀门打开。此外,还可通过旁通管,利用排水管中的压力水的反冲作用,冲掉积存于水泵流通部分和附着于滤水器上的杂物,但此时须通过连接在底阀上的铁丝或链条将底阀提起。

1.1.5 压力表和真空表

压力表安装在水泵的排水接管上,为检测排水管中水压大小用。常用的压力表为普通弹簧管压力表,根据其结构特征可分为径向无边、径向带边和轴向带边三种。表壳的公称直径有60mm,100mm,150mm,200mm和250mm五种。压力表所测出的压力叫做表压力或相对压力,它比绝对压力小1个大气压。

真空表安装在水泵的吸水接管上,为检测吸水管的真空度用。根据其结构特征也可分为径向无边、径向带边和轴向带边三种。表壳的公称直径和压力表一样,也分为60, 100, 150,和250mm五种。真空表测量范围为0--0.1 MPa(一个大气压)。

1.1.6 射流泵或真空泵

离心式水泵在起动前必须将吸水管和泵腔内注满水才能进入运行状态,否则水泵转动时将无法吸水,形成“干烧”,严重影响水泵的使用寿命。在无底阀的排水系统中,水泵每次起动都要灌水,这一工作由抽真空设备完成,一般使用射流泵或真空泵。如图1-2所示。它们的工作原理不同,但都能在系统中使水泵工作腔达到一定的真空度,保证系统正常工作。

1.2井下排水系统存在的问题

目前,我国大多煤矿企业的井下水泵房使用的仍然是传统的人工操作排水系统,以离心式水泵系统为主。这种排水系统的操作以离心式水泵的工作特性为基础,泵站的起停时间判断,完全依赖于工人的经验和已有的操作规程。当水仓水位到达设定的高水位时,工人打开射流泵(或真空泵),为水泵抽真空,同时观测真空表的读数。真空度达到要求后,起动水泵机组,使水泵运转。当水泵出水口压力表读数达到要求时,开起闸阀进行排水,同时关闭抽真空的射流泵(或真空泵)。

停泵过程要进行相反的操作。当水仓积水降至低水位时,先将闸阀关死,再停水泵机组。

根据现场涌水量的不同,工人还要判断同时投入几台水泵工作,以便于既能及时排出积水,又能使泵站合理使用,避免过度频繁的起停。

其存在的问题有如下几点:

另外,对水位、涌水量大小等现场数据的判断依赖于工人的经验。作业过程比较复杂,要求工人具有很强的责任心,否则可能出现误操作,甚至发生大的事故。

②工人劳动强度大。人工操作无法避免高强度的劳作。尤其是闸阀的操作,劳动量最大。而且,水泵房要时时有人值守,以便在发生异常情况时,及时报警检修。

①效率低、可靠性差。这种排水系统的工作流程完全由手工完成,工人按部就班的完成各个执行件的操作。

1.3排水系统为何要实现自动控制

针对上述排水系统存在的问题,本文提出了基于PLC的矿井主排水自动控制系统的设计。自动控制系统的应用,将使得排水系统可靠性增强,整个工作流程通过软件的编程来实现,程序确定后,水泵机组将按给定的程序自动启停水泵、开合阀门,极大的减小工人的劳动强度。PLC将水泵机组的运行状态与参数经安全生产监测系统传至地面生产调度监控中心主机,管理人员在地面即可掌握井下主排水系统设备的所有检测数据及工作状态,又可根据自动化控制信息,实现井下主排水系统的遥测、遥控。

1.4我国矿井主排水系统的现状

井下排水是伴随着采矿工程产生的一项系统工程。随着控制理论和现代检测技术的发展,自动排水系统的研究在理论和实践上都取得了一定进步。

这种检测控制方法效率低,工人劳动强度大,且由于井下环境恶劣,故障率较高。所以靠人工检测的方法已不适应煤炭发展的需要,取而代之的是自动化排水系统。

随之,一种新颖的矿井排水计算机自动控制系统问世。由于矿井排水系统属于多变量、非线性、时变的复杂系统,特别是在管道和水泵等环节中,各变量之间又存在着交叉,因此矿井排水系统非常适合于采用模糊控制的方法进行动态监测和故障诊断。该系统采用先进的集散式控制方式,建立了多级模块化的结构体系,提出了多参数的模糊综合决策方法。

目前,PLC在国内外工业控制中已获得广泛应用,在矿井排水系统中,采用PLC自动监测排水系统的运行状况,自动进行数据采集、自动记录、故障报警、事故分析、多台水泵启动的自动切换等,所得到的动态资料准确性高,控制的可靠性高。

传统的继电器控制方法,用人工进行检测(如人工检测水仓水位、淤泥厚度、管道、闸阀及配电设备状况等),

第二章 矿井自动排水系统的各种参数与检测

排水装置要实现自动控制、无人职守,最根本的就是让控制系统了解自动化系统中各个设备的状况和运行状态。这些运行状态经过系统中央处理单元的分析和运算后,做出判断并显示给集中监控室。

一、

图 主排水泵自动化监控系统图

排水装置实现自动化的过程中,必须对图所示参数进行检测,本章将对以下5个监控的参数展开论述并给出检测的方法和可实现性。

(1)水仓水位的检测 (2)水泵流量的检测 (3)水泵压力检测 (4)水泵负压检测 (5)电机及水泵温度检测

2.1水仓水位的检测

2.1.1液位传感器介绍 一、超声波液位传感器

到接受到反射波为止的这个时间间隔为已知,就可以求出分界面的位置,利用这种方法可以对液位进行测量。根据发射和接受换能器的功能,传感器又可分为单换能器和双换能器。单换能器的传感器发射和接收超声波使用同一个换能器,而双换能器的传感器发射和接受各使用一个换能器。

下面就单换能器的超声波传感器加以介绍:超声波发射和接收换能器可以安装在液面的上方,让超声波在空气中传播。

超声波液位传感器是利用超声波在两种介质的分界面上的反射特性而制成的。如果从发射超声波脉冲开始,

如图3-2所示。

图 超声波液位计安装示意图

对于单换能器来说,超声波从发射器到液面,又从液面反射到换能器的时间为:

式中: h —换能器距液面的距离; c —超声波在介质中的传播速度。

从以上公式中可以看出,只要测得超声波脉冲从发射到接收的时间间隔,便可以求得待测的液位。 超声波液位传感器具有精度高和使用寿命长的特点,但若液体中有气泡或液面发生波动,便会产生较大的

,检测液位的范围为

m。

(式3-1)

(式3-2)

误差。在一般使用条件下,它的测量误差为

本设计中采用的是Yjsonic系列的超声波液位计,在测量中脉冲超声波由传感器(换能器)发出,声波经物体表面反射后被同一传感器接收,转换成电信号。并由声波的发射和接收之间的时间来计算传感器到被测物体的距离。

工作特点:采用SMD技术,提高仪器的可靠性,自动功率调整,增益控制、温度补偿。先进的检测技术,丰富的软件功能适应各种复杂环境。采用新型的波形计算技术,提高仪表的测量精度。具有干扰回波的抑制功能,保证测量数据的真实。16位D/A转换,提高电流输出的精度和分辨率。传感器采用四氟乙烯材料,可用于各种腐蚀性场合,多种输出方式:可编程继电器输出、高精度4~20mA电流输出、RS-485数字通信输出等方式可供选择。

图 超声波液位计选型

设计中选用二线制输出型液位计,其参数如下: 量程: 0~3、5、8、10、15、20m 精度: 0.25% 盲区: 0.3~0.5m 温度: -20℃~+55℃ 电源: 24VDC 控制: 无

输出: 4~20mA 二线制 防护等级: IP65 显示方式: 4位LCD 二、投入式液位传感器

投入式液位传感器是将传感器的探头投入液体中。利用

处于一定深度时液体会产生一定的压强这个基本原理制成的。其示意图如图3-4所示。