(完整版)基于PLC的温度控制系统毕业设计论文 联系客服

发布时间 : 星期一 文章(完整版)基于PLC的温度控制系统毕业设计论文更新完毕开始阅读6c816cc4bdeb19e8b8f67c1cfad6195f312be8cb

指令,执行诸如逻辑、顺序、计时、计数与演算等功能,并通过模拟和数字输入、输出等组件,控制各种机械或工作程序。PLC可靠性高、抗干扰能力强、编程简单,易于被工程人员掌握和使用,目前在工业领域上被广泛应用[6]。相对于IPC,DCS,FSC等系统而言,PLC是具有成本上的优势。因此,PLC占领着很大的市场份额,其前景也很有前途。

工控机(IPC)即工业用个人计算机。IPC的性能可靠、软件丰富、价格低廉,应用日趋广泛。它能够适应多种工业恶劣环境,抗振动、抗高温、防灰尘,防电磁辐射。过去工业锅炉大多用人工结合常规仪表监控,一般较难达到满意的结果,原因是工业锅炉的燃烧系统是一个多变量输入的复杂系统。影响燃烧的因素十分复杂,较正确的数学模型不易建立,以经典的PID为基础的常规仪表控制,已很难达到最佳状态。而计算机提供了诸如数字滤波,积分分离PID,选择性PID。参数自整定等各种灵活算法,以及“模糊判断”功能,是常规仪表和人力难以实现或无法实现的[7]。在工业锅炉温度检测控制系统中采用控机工可大大改善了对锅炉的监控品质,提高了平均热效率[7]。但如果单独采用工控机作为控制系统,又有易干扰和可靠性差的缺点。

集散型温度控制系统(DCS)是一种功能上分散,管理上集中上集中的新型控制系统。与常规仪表相比具有丰富的监控、协调管理功能等特点。DCS的关键是通信。也可以说数据公路是分散控制系统DCS的脊柱。由于它的任务是为系统所有部件之间提供通信网络,因此,数据公路自身的设计就决定了总体的灵活性和安全性。基本DCS的温度控制系统提供了生产的自动化水平和管理水平,能减少操作人员的劳动强度,有助于提高系统的效率[8]。但DCS在设备配置上要求网络、控制器、电源甚至模件等都为冗余结构,支持无扰切换和带电插拔,由于设计上的高要求,导致DCS成本太高。

现场总线控制系统(FCS)综合了数字通信技术、计算机技术、自动控制技术、网络技术和智能仪表等多种技术手段的系统。其优势在于网络化、分散化控制。基于总线控制系统(FCS)的温度控制系统具有高精度,高智能,便于管理等特点,FCS系统由于信息处理现场化,能直接执行传感、控制、报警和计算功能。而且它可以对现场装置(含变送器、执行器等)进行远程诊断、维护和组态,这是其他系统无法达到的[9]。但是,FCS还没有完全成熟,它才刚刚进入实用化的现阶段,另一方面,另一方面, 目前现场总线的国际标准共有12种之多,这给FSC的广泛应用添加了很大的阻力。

各种温度系统都有自己的优缺点,用户需要根据实际需要选择系统配置,当然,在实际运用中,为了达到更好的控制系统,可以采取多个系统的集成,做到互补长短。

温度控制系统在国内各行各业的应用虽然已经十分广泛,但从生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比有着较大差距。成熟产品主要以“点位”控制及常规的PID控制器为主。它只能适应一般温度系统控制,难于控制滞后、复杂、时变温度系统控制。而适应于较高控制场合的智能化、自适应控制仪表,国内技术还不十分成熟,形成商品化并在仪表控制参数的自整定方面,国外已有较多的成熟产品。但由于国外技术保密及我国开发工作的滞后,还没有开发出性能可靠的自整定软件。控制参数大多靠人工经验及现场调试确定。国外温度控制系统发展迅速,并在智能化、自适应、参数自整定等方面取得成果。日本、美国、德国、瑞典等技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪器仪表,并在各行业广泛应用。目前,国外温度控制系统及仪表正朝着高精度、智能化、小型化等方面快速发展[10]。

在现代化的今天,现代化控制是一个国家现代化水平的标志之一,在

工业自动化领域,可编程控制器(PLC)作为自动控制的三大技术支柱(PLC、机器人、CADCAM)之一,成为大多数自动化系统的设备基础。可编程控制器是一种数字运算操作的电子系统,是专为在工业环境下应用设计,它采用可编程序的存储器,用来在内部存储执行逻辑运算、顺序控定时、计数和算术等操作的指令,并采用数字式、模拟式的输入和输出,控制各种的机械或生产过程。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。1969年美国DEC公司研制出第一台可编程控制器,用在GM公司生产线上的获得成功。其后日本、德国等相续引入,可编程控制器迅速发展起来。 进入20世纪80年代,由于计算机技术和微电子技术的迅速发展,极大的推动了PLC的发展,使的PLC的功能日益增强。PLC可进行模拟量控制、位置控制和PID控制等,易于实现柔性制造系统。远程通信功能的实现更使PLC 如虎添翼。目前,在先进国家中,PLC已成为工业控制的标准设备,应用面几乎覆盖了所有工业企业。之所以应用广泛,是因为PLC有很多优点,本文涉及的温度监控系统是以PLC为核心的监控系统。该项目的最终目标是开发一个能进行加热,能够通过传感器检测实际的温度值,而且能够显示温度值,当实际温度值和设定温度值不相等时发出报警信号,以便让操作工控制。本系统在温度控制方面应用广泛,例如面包的生产,工业中的锅炉加热等。

本系统的控制是采用PLC的编程语言------梯形语言,梯形语言是在可编程控制器中的应用最广的语言,因为它在继电器的基础上加进了许多功能、使用灵活的指令,使逻辑关系清晰直观,编程容易,可读性强,所实现的功能也大大超过传统的继电器控制电路。温度监控系统作为一个应用系统,要不断地完善,适应时代、市场的需要才能有所发展。

1.3总体设计分析

根据温度系统的具体设计要求

①要求PLC系统能够监控反应器的温度。 ②开始工作时全速加热,到设定值时停止加热。

③保温过程中温度过高低时能发出报警,声报警能用按钮手动解除,光报警在正常时自动解除。

基于以上的要求,所设计的系统必须有以下结构模块:温度变送器单元、加热单元、PLC模拟量转换模块单元、SSR单元 。

2 系统的结构模块

三菱FX系列PLC控制的温度控制系统,由PLC作为核心构成的系统可方便地运用软件设置、调整参数,利用模拟功能模块和功能指令,在外围电路的配合下实现温度模拟信号采集、AD转换与处理。

温度控制系统广泛运用在工业控制的各个领域,温控系统控制方法的好坏、运行性能的合适与否,直接影响到产品质量、运行效率等。PLC在温度控制系统中得到了有效的运用,为温控系统提供安全可靠和比较完善的解决方案。三菱FX系列PLC控制的温度控制系统,由PLC作为核心构成的系统可方便地运用软件设置、调整参数,利用模拟功能模块和功能指令,在外围电路的配合下实现温度模拟信号采集、AD转换与处理。如下图所示为温度控制系统图。 IO分配: X0:开始控制 Y0:故障显示Y1:电加热器

图1

3.1 PLC的定义

可编程控制器(Programmable Controller,简称PC)是在传统的顺