(完整版)基于单片机的毕业论文设计 联系客服

发布时间 : 星期日 文章(完整版)基于单片机的毕业论文设计更新完毕开始阅读6d1d6fc4bdeb19e8b8f67c1cfad6195f302be85f

块就可以了。

这里将显示功能集中到一起,作为一个功能模块,就要求它的功能全面,能根据系统软件提供的信息自动完成显示内容的查找,变换和输出驱动。这样设计使得各功能模块都不必考虑显示问题,只要给出一个简单的信息(如显示格式编码)甚至不用再提供额外信息,直接利用当前状态变量和软件标志就可以完成所需的显示要求。

如果编写这样一个集中显示模块有困难,也可以将显示模块编小一些,只完成显示缓冲区的内容输出到显示器件上的工作。这时各功能模块在提出显示申请时,还需要将显示内容按需要的格式送入显示缓冲区中。这样分而治之比较容易编程,但要小心出现显示混乱。例如后台程序需要调用显示,将有关信息送入到现实缓冲区进行显示;中断返回后,后台程序继续送完后半部分显示内容,但前半部分内容已经变了,这样就出现了显示错误。解决的办法是,在申请显示前,先检查是否已经有显示申请,如果有,就不再申请,等待下次机会;如果没有,则先申请标志位,再将显示内容送入显示缓冲区。这时就不必担心其他前台模块来打扰了,就可以得到一次完整的显示机会。

在这里我们使用的是七段数码管显示,通常在显示[6]上我们采用的方法一般包括两种:一种是静态显示,一种是动态显示。其中静态显示的特点是显示稳定不闪烁,程序编写简单,但占用端口资源多;动态显示的特点是显示稳定性没静态好,程序编写复杂,但是相对静态显示而言占用端口资源少。在本设计中根据实际情况采用的是动态显示方法。

并通过查表法,将其在数码管上显示出来,其中P0口为字型码输入端,P2口低3位为字选段输入端。在这里我们通过查表将字型码送给7段数码管显示的数字,数码管显示原理如下:

MOV A,R5

MOVC +DPTR ;查字型码

MOV P2,#01H ;送位选码 MOV P0,A ;送字型码 ACALL DELAY ;调延时,去闪烁

在七段数码管显示中可分为共阳极和共阴极两种类型极。以共阴为例,要想a段亮,向a段送1就是,返之送0,共阳刚好相反。 3.5 扫描电路的实现

键盘是人与微机系统打交道的主要设备。关于键盘硬件电路的设计方法也可以在文献和书籍中找到,配合各种不同的硬件电路,这些书籍中一般也提供了相应的键盘扫描程序。站在系统监控软件设计的立场上来看,仅仅完成键盘扫描,读取当前时刻的键盘状态是不够的,还有不少问题需要妥善解决,否则,人们在操作键盘就容易引起误操作和操作失控现象。在单片机应用中键盘用得最多的形式是独立键盘及矩阵键盘。

它们各有自己的特点,其中独立键盘硬件电路简单,而且在程序设计上也不复杂,一般用在对硬件电路要求不高的简单电路中;矩阵键盘与独立键盘有很大区别,首先在硬件电路上它要比独立键盘复杂得多,而且在程序算法上比它要烦琐,但它在节省端口资源上有优势得多,因此它更适合于多按键电路。其次就是消除在按键过程中产生的“毛刺”现象。这里采用最常用的方法,即延时重复扫描法,延时法的原理为:因为“毛刺”脉冲一般持续时间短,约为几ms,而我们按键的时间一般远远大于这个时间,所以当单片机检测到有按键动静后再延时一段时间(这里我们取10ms)后再判断此电平是否保持原状态,如果是则为有效按键,否则无效。 3.5.1 按钮输入的硬件处理

按钮的触点在闭合和断开时均会产生抖动,这是触点的逻辑电平是不

稳定的,如不妥善处理,将会引起按键命令的错误执行或重复执行。现在一般均用软件延时的方法来避开抖动阶段,这一延时过程一般大于5ms,例如取10-20ms。如果监控程序中的读键操作安排在主程序(后台程序)或键盘中断(外部中断)子程序中,则该延时子程序便可直接插入读键过程中。如果读键过程安排在定时中断子程序中,就可省去专门的延时子程序,利用两次定时中断的时间间隔来完成抖动处理。 3.6 发声

我们知道,声音的频谱范围约在几十到几千赫兹[7],若能利用程序来控制单片机某个口线的“高”电平或低电平,则在该口线上就能产生一定频率的矩形波,接上喇叭就能发出一定频率的声音,若再利用延时程序控制“高”“低”电平的持续时间,就能改变输出频率,从而改变音调,使喇叭发出不同的声音。 3.7 系统复位

使CPU进入初始状态,从0000H地址开始执行程序的过程叫系统复位。从实现系统复位的方法来看,系统复位可分为硬件复位和软件复位。硬件复位必须通过CPU外部的硬件电路给CPU的RESET端加上足够时间的高电位才能实现。上电复位,人工按钮复位和硬件看门狗复位均为硬件复位。硬件复位后,各专用寄存器的状态均被初始化,且对片内通用寄存器的内容没有影响。但是,硬件复位还能自动清除中断激活标志,使中断系统能够正常工作,这样一个事实却容易为不少编码人员所忽视。软件复位就是用一系列指令来模拟硬件复位功能,最后通过转移指令使程序从0000H地址开始执行。对各专用寄存器的复位操作是容易的,也没有必要完全模拟,可根据实际需要去主程序初始化过程中完成。而对中断激活标志的清除工作常被遗忘,因为它没有明确的位地址可供编程。有的编程人员用020000

(LJMP 0000H)作为软件陷阱,认为直接转向0000H地址就完成了软件复位,就是这类错误的典型代表。软件复位是使用软件陷阱和软件看门狗后必须进行的工作,这时程序出错完全有可能发生在中断子程序中,中断激活标志已置位,它将阻止同级中断响应。由于软件看门是高级中断,它将阻止说要中断响应,由此可见清除中断激活标志的重要性。

在所有的指令中,只有RETI指令能够清除中断激活标志。前文各处提案到的出错处理程序ERR主要完成这一功能,其他的善后工作交由复位后的系统去完成。

有复位时系统的历史状况,可将复位分为“冷启动”和“热启动”。 “冷启动”时,系统的状态全部无效,进行彻底的初始化操作;而“热启动”时,对系统的当前状态进行修复和有选择的初始化。系统初次上电投入运行时,必须是“冷启动”,以后由抗干扰措施引起的复位操作一般均为“热启动”初次上电投入运行时,必须是“冷启动”,以后由抗干扰措施引起的复位操作一般均为“热启动”。为了使系统能正确决定采用何种启动方式,常用上电标志来区分,如图3-6所示。

图3-6 系统复位策略图

第四章 软件设计

4.1 软件任务分析

软件任务分析和硬件电路设计结合进行,哪些功能由硬件完成,哪些任务由软件完成,在硬件电路设计基本定型后,也就基本上决定下来了。

软件任务分析环节是为软件设计做一个总体规划。从软件的功能来看可分为两大类:一类是执行软件,它能完成各种实质性的功能,如测量,计算,显示,打印[8],输出控制和通信等,另一类是监控软件,它是专门用来协调各执行模块和操作者的关系,在系统软件中充当组织调度角色的软件。这两类软件的设计方法各有特色,执行软件的设计偏重算法效率,