波浪能发电的技术类型与产业化前景分析 联系客服

发布时间 : 星期二 文章波浪能发电的技术类型与产业化前景分析更新完毕开始阅读6db3bbd2195f312b3169a5b6

波浪能转换成液压能或旋转的机械能,再通过相连的发电机转换成电能或通过其他设备制造淡水或冰。

振荡浮子式波浪能发电装置作为点吸收式波浪能技术的一种成功应用,近年来得到了较快的发展,并成功在商业上应用了此类波能转换系统,为导航设备(如浮标灯)提供电力。英国AWS ocean Energy有限公司研制的阿基米德波浪摆装置(图3)由2个相嵌套的圆筒组成,上部圆筒为漂浮的,在波浪作用下上下运动,而下部圆筒固定不动。美国OPT(Ocean Power Technologies)公司研制的PowerBuoy波力装置(图 4)通过控制浮力,控制能量的吸收。2006年2月,OPT公司在英国北部Cornwall对该装置进行第六次试验。2007年2月获得联邦能量结构委员会(FERC)批准,建立 50MW示范装置场。2007年10月OPT公司获得美国海军190万美元的资助,在夏威夷安装PowerBuoy装置系统。

图3 AWS振荡浮子式波能装置 图4 PowerBuoy点吸收式波力装置

振荡浮子式的主要优点是其建造方便,投放点机动灵活,缺点是其水动力学性能不佳,装置前面的反射波很大,装置背后的波浪能仍然很大,未能达到较高的转换效率,抗冲击性也较差。

2.3消耗式波浪能技术

消耗式波浪能技术通过漂浮在水面的、端部铰接的若干筏浮体俘获波浪能,再通过液压系统驱动发电机发电。通过铰链将筏体首尾铰接在一起从而形成长度方向顺浪布置的整体,液压传动系统安装于两两筏体之间的铰接处,沿着长度方向布置的筏体会随着顺浪的波动而发生相对运动,从而带动铰接处的液压传动系统做功并输出能量。大量的海试试验结果分析表明,该类波浪能发电装置具有较好的可靠性,且在设计波况下具有较高的系统效率。

最近建成的McCabe Wave Pump(MWP)波力装置(图5)由三个成直角的钢质浮筒构成,通过横梁铰链在一起,总长度40米,具有自动朝向来波的功能。该装置可驱动海水淡化系统获得可饮用的纯净水,或驱动发电机发电。英国OPD公司 (Ocean Power De11very Ltd)研究的Pelamis实际为改良的筏式装置(图6)。传统的消耗型筏式装置只允许一个方向的角位移,在斜浪作用下其铰受到弯曲力矩,容易遭到破坏;而Pelamis允许两个方向的角位移,抗浪能力大大提高。Pelamis

5

的能量采集系统为三个端部相铰接、直径3.5米的浮筒,利用相邻浮筒的角位移驱动活塞,将波浪能转换成液压能,装机容量为750kw,总长为15。米,放置在水深50米~60米深的海面上。它是世界上第一座进行商业示范运行的漂浮式波力电站,目前正在加拿大建造总功率可达2Mw的试商业运行示范电站。

图5 MWP消耗式波力筏装置 图6 Pelamis消耗式波力装置

消耗型筏式波能装置的优点是具有较好的整体性,抗波浪冲击能力较强,具有较好的能量传递效率,发电稳定性好,但其长度方向顺浪布置,迎波面较小,与垂直于浪向的同等尺度的波能装置比,筏式装置吸收波浪能的能力较为逊色,单位价值材料所获取的能量较小,导致实体尺寸过大。

2.4截止式波浪能技术

截止式波浪能技术巧妙利用自身的几何形状避免了波浪能向后辐射,降低了兴波阻力,出现了许多构思设计精妙的波能发电装置,如点头鸭、聚波围堰装置和摆式装置等,下面分别予以介绍。

2.4.1“点头鸭”型截止式波浪能转换装装置

上世纪七十年代,英国爱丁堡大学的Sa1ter教授发明了一种构想巧妙的“点头鸭”式波浪能发电装置(见图 7),点头鸭式波浪能发电装置的得名是由于该装置的形状和运行特性酷似鸭的运动,波浪入射波的运动使得动压力推动转动部分绕轴线旋转,流体静压力的改变使浮体部分作上升和下沉运动,动能和位能同时通过液压装置转化,再通过液力或电力系统把动能转换为电能。

该装置转动轴心垂直于顺浪方向安装,故在波浪的作用下,“点头鸭”装置会绕动转动轴心往复纵摇做功囚。同时由于“点头鸭”装置横截面轮廓类似鸭蛋型圆弧,不会产生向后的行进波,能有效避免波浪向后辐射,具有较高的一次能量捕获效率。中国科学院广州能源研究所研制了一座300W波能转换装置(见图 8),目前正在研制世界上第一个漂浮式鸭式装置,采用振荡浮子装置的动力摄取技术,以求降低漂浮式鸭式装置的成本。

6

图7 “点头鸭”型截止式波浪能转换装装置 图8 300W鸭式波能转换装置

“点头鸭”装置的缺点在于在其结构复杂导致抗浪能力较弱,诸如液压缸等关键部件错综布置,易发生干涉卡死等现象,其固定支架的海上安装涉及复杂的海下施工技术,可靠性不高;同时,其前端较小后端较大的鸭蛋型几何形状导致其抗浪性较差,在恶劣海况下无法抵抗波浪的侵袭破坏。

2.4.2聚波围堰型截止式波浪能转换装置

聚波围堰型截止式波浪能技术依靠逐渐收缩的波道俘获波浪能,使波高在逐渐收缩的波道中放大,直到波浪越过波道顶进入高于海面的水库。进入水库的水的势能通过水轮发电机转换成电能。这种转换方法的优点在于其整体可靠性较点头鸭波能装置有了极大的提高可长期稳定运行。

1986年,挪威建造了世界上第一座聚波围堰型波力电站,其围堰波道开口约60m宽,呈喇叭形逐渐变窄的锲形导槽,逐渐收缩通至高位水库。高位水库与外海间的水头落差达3.5m其装机容量可达35OkW。电站自建成以来一直工作正常。不足之处是,电站对地形要求严格,不易推广。丹麦的Wave Dragon公司研建了漂浮式的聚波围堰型装置(图9)。该装置由钢结构组成,漂浮于海面上,通过锚链锚泊于海底,两侧具有导浪浮体,采用低水头的Kaplan水轮机组发电。该装置不受潮位影响,在大浪时可以稳定发电,导浪浮体具有较好的聚波能力,可根据波高调解状装置的吃水高度,具有较好的水动力学性能。

图9 Wave Dragon波浪能装置

2.4.3摆式截止型波浪能转换装置

摆式波浪能发电技术的概念最早是由日本的度部富治教授提出的,其原理是利用根据波况设计的水槽人为造成立波。由波浪理论可知,水质点在立波驻点处会做往复运动,宏观上表现为人们常见的波浪团簇往复运动。摆式波浪能发电装

7

置就是利用这种现象,在波浪力的作用下,利用摆板的往复摆动从而捕获波浪能量,通过与摆板摆轴相连的液压传动系统转换为液压能,进而转换为电能发电。

1983年,日本室兰工业大学建造了世界上第一座悬挂摆式波浪能发电装置,其摆宽为2米,装机功率为5kw。该悬挂摆式波浪能发电装置利用水室中的立波推动悬挂摆的摇摆运动捕获波浪能。摆板的运行很适合波浪大推力和低频特性,它的阻尼是液压装置。利用两台单向作用的液力泵驱动发电机便可吸取全周期的波浪能。该悬挂摆式波艰能发电装置在周期为4s,波高为1.5m时的设计波况下,其额定输出功率约为5kw,系统总效率可达40%左右。同期日本室兰工业大学又在烧究岛的西浦港建造了一座悬挂摆式波浪能发电装置,其装机功率为20kw,用于向岛上居民独立供电。“八五”、“九五”期间,我国国家海洋局海洋技术中心分别研建了8KW和30KW岸式悬挂摆式波能发电装置,为岛上居民供电。1996年国家海洋局海洋技术研究所在山东省即墨市大管岛建造的岸式悬挂摆波浪能发电装置,其设计额定功率可达30kw。该悬挂摆式波浪能发电装置适用于入射波高为1~6米的设计波况,发电状况良好,据文献报道目前该装置仍能维持正常运行。

摆式波能装置也可分为悬挂摆式和浮力摆式两种。摆体的运动很适合波浪大推力和低频的特性。因此,摆式波能装置的转换效率较高,但机械和液压机构的维护较为困难。虽然悬挂摆式波浪能发电装置具有较高的能量捕获效率,但是受限于适用波况,对设计要求较高,在设计波况下具有较高的一次能量捕获效率;而在非设计波况下,悬挂摆式波浪能发电装置的一次能量捕获效率较低。浮力摆式波浪能发电装置由于结构本身造成整体可靠性较差,一旦遭遇诸如台风等恶劣的海洋状况,就易造成损坏影响系统稳定运行。

第三章 波浪能发电产业化前景分析

3.1 我国波浪能发电产业化意义

我国目前正处于实现工业化和信息化的经济高速发展期,特别是沿海地区,能源需求的急剧增加以成为社会和经济发展的瓶颈.众多海岛 ,在海洋开发和国防建设方面占有重要地位,特别是远离大陆的岛屿 ,依靠大陆供应能源 ,供应线过长 ,且受风浪影响.能源和淡水是海洋资源开发和海防建设活动的基本需求,能源和淡水供应的成本关系到海洋资源开发的成本,因而也就直接影响到海洋资源开发的能力。解决能源和淡水供应问题成为远海资源开发的关键,相对于其它形式的可再生能源 ,波浪能等形式的海洋能易于规划 ,具有较大优势 ,因此建立利用波浪能的独立发电和海水淡化系统大有发展潜力。

据估计 ,从现在起到未来的 30 年中,平均每 10年我国能源需求总量应增

8