优化设计-2 联系客服

发布时间 : 星期日 文章优化设计-2更新完毕开始阅读7f7ffcdcdd88d0d233d46ad8

(3) 矩阵的2范数

A2?[?max(ATA)][1 2 3 4]

12T

其中,?max表示矩阵AA的最大特征值。2.2 方向导数与梯度

1 方向导数

首先回顾偏导数的概念,对二元函数,有

(0)(0)?ff(x1(0)??x1,x2)?f(x1(0),x2)|x(0)?lim

?x1?0?x1?x1(0)(0)f(x1(0),x2??x2)?f(x1(0),x2)?f|x(0)?lim

?x2?0?x2?x2根据图2.1,二元函数的方向导数定义为

(0)(0)f(x1(0)??x1,x2??x2)?f(x1(0),x2)?f|x(0)?lim??0?d?(0)(0)f(x1(0)??x1,x2)?f(x1(0),x2)?x1?lim???0?x1??lim?f(x(0)1??x1,x(0)2??0??x2)?f(x?x2(0)1??x1,x)?x2?(0)2 (2.3)

??f?f|x(0)cos?1?|(0)cos?2?x1?x2x1

式中,cosα和cosα

2

分别为d方向与坐标轴x1,x2方向之间夹角的余弦;

??(?x)2?(?y)2。

x2 x(1) d x(0) ρ α2 Δx2 α1 Δx1 0 x1 图2.1 函数的方向导数

n元函数f(x1,x2,…,xn)在点x(0)=[x1(0) x2(0) … xn(0)]T处沿d方向的方向导数为

?f|x(0)??dn?f?f?f|x(0)cos?1?|x(0)cos?2?...?|x(0)cos?n?x1?x2?xn???f|x(0)cos?i?xi?1i (2.4)

2 梯度

(1)二元函数的梯度 根据式(2.3),称向量

?f(x(0))?[?f?x1?fT](0)?x2x??f???x???1? ??f????x2??x(0)为二元函数f(x1,x2)在点x(0)处的梯度。

(2)多元函数的梯度

多元函数f(x1,x2,…,xn)在点x(0)处的梯度为

?f(x(0))?[?f?x1?f?x2...?fT](0) ?xnx?cos?1??cos??2?设d??

?????cos?n??为d方向的单位向量,则沿d的方向导数为

?f|x(0)??f(x(0))Td??f(x(0))cos(?f,d) ?d其中,?f(x(0))代表梯度向量?f(x(0))的范数;cos(?f,d)表示梯度向量与d方向夹角的

余弦。在x(0)处函数沿各方向的方向导数是不同的,它随变化,即随cos(?f,d)所取方向的不同而变化。其最大值发生在cos(?f,d)取值为1时,也就是当d方向和梯度方向重合时其值最大。可见,梯度方向是函数值变化最快的方向,而梯度的范数就是函数变化率的最大值。

例2.1 求目标函数f(x)=x12+x1x2 x(0)=[1 2]T处的梯度。 d a1=30°, a2=60°方向导数 解:

?f?2x1?x2|(1,2)?4,?x1f(x)在x(0)点处的梯度为

?f?x1|(1,2)?1 ?x2??f???x??4?(0)?f(x)??1????

??f??1????x2??x(0)f(x)在x(0)点处梯度的模为

?f(x(0))?42?12?17

2.3 函数的泰勒级数展开

一元函数f(x)的泰勒级数展开,设f(x)在开区间(a,b)内具有直到(n+1)阶的导数,x0

是区间(a,b)内一点,x是以x0为中心的某个领域内的点,则f(x)在x0处的泰勒级数展开为

f(x)?f(x0)?f?(x0)f??(x0)(x?x0)?(x?x0)2?0(?x2) 1!2!1f??(x0)(?x)2 2取级数的前3项近似目标函数,则f(x)可近似表示为

f(x)?f(x0)?f?(x0)?x?对于n元函数f(x)=f(x1,x2,…,xn),设f(x)在x(0)点的某一领域内存在连续偏导数,则在这个领域内函数f(x)可展开成泰勒级数。即

f(x)?f(x(0))??f?f(0)|x(0)(x1?x1(0))?|x(0)(x2?x2)?...?x1?x2?1??2f?2f?2f(0)2(0)(0)(0)??2|x(0)(x1?x1)?|x(0)(x1?x1)(x2?x2)?|x(0)(x1?x1(0))(x3?x3)???2??x1?x1?x2?x1?x3?1?3f?3f(0)3(0)(0)?[3|x(0)(x1?x1)?|x(0)(x1?x1(0))(x2?x2)(x3?x3)3?x1?x1?x2?x3?3f(0)(0)?|x(0)(x1?x1(0))(x2?x2)(x4?x4)??]???x1?x2?x4

如果忽略二阶以上的各阶小量,则函数可近似表述为

1f(x)?f(x(0))?[?f(x(0))]T(x?x(0))?(x?x(0))TG(x(0))(x?x(0)) (2.5)

2其中,x?[x1x2?xn]T (2.6)

?f(x(0))?[?f?x1?f?x2??fT]x(0) (2.7) ?xn??2f??x2?21??fG(x(0))??2f(x(0))???x2?x1???2??f??x?x?n1?2f?x1?x2?2f2?x2??2f?xn?x2?2f???x1?xn???2f???x2?xn? (2.8)

????2f??2??xn?x(0)

G(x(0))称为f(x)在点x(0)处的Hessian(黑塞)矩阵。 对二元函数,式2.5表示为

f(x1x2)?f(x1(0)(0)x2)??f?f(0)|x(0)(x1?x1(0))?|x(0)(x2?x2)?x1?x21??2f?2f?2f(0)2(0)(0)(0)2???2|x(0)(x1?x1)?2|x(0)(x1?x1)(x2?x2)?2|x(0)(x2?x2)?2??x1?x1?x2?x2?以向量形式表示二元函数f(x)在点x(0)处展开成泰勒二次多项式为

??f?f1??2f?2f?2f2f(x)?f(x)?dx1?dx2??2(dx1)?2dx1dx2?2(dx2)2?

?x1?x22??x1?x1?x2?x2?(0)用矩阵形式表示则为

??ff(x)?f(x(0))????x1(0)?f??dx1?1?dx??2?dx1?x2???2???2f??x2dx2??21??f??x?x?21?2f??dx1??x1?x2??? (2.9) ?2f??dx?2?2??x2?其中,dxi?xi?xi,i?1,2. 根据二元函数的梯度定义,

??f?f(x(0))????x1故式2.9可改写成

?f??,?x2?x(0)T??2f??x22(0)?f(x)??21??f??x?x?21T?2f??x1?x2?? 2?f?2??x2?x(0)f(x)?f(x(0))??f(x(0))x1?x1(0)?函数f(x)在点x(0)处的梯度?f(x重要依据。

(0)????1?x?x?21(0)T1??2f(x(0))x1?x1(0)

??)和Hessian矩阵是计算函数极值以及判断极值点性质的

2.4 无约束优化问题的极值条件

函数的极值点(如极小值点)定义为:对函数定义域内任意一点x(0),若总存在