高分子化学习题与答案 联系客服

发布时间 : 星期日 文章高分子化学习题与答案更新完毕开始阅读80803667af1ffc4ffe47acc1

Nan-BuLiCNH2CCCNH2SO4H2CCHClCH3H2CCCH3H2CCHCCH2CH3BF3 + H2O习 题 4

1、 1 分析下列引发体系和单体,何种引发体系可引发何种单体聚合?聚合反应类型是什么?写出链引发反应式。

CH3H2CCCO2CH3H2COC CH3 OOH + Fe2+2CH3H2CCHCHCH3H2CCHOC CH33CH3CCH2HCCH2

引发体系 单体 2、解释下列概念

离子对 异构化聚合 活性聚合

3、 假定在异丁烯的聚合反应中向单体链转移是主要终止方式,聚合物末端是不饱和端基。现有4.0g的聚合物使6.0ml 0.01mol/l的Br—CCl4溶液正好褪色,计算聚合物数均相对分子质量。

4、 异丁烯在(CH2Cl)2中用SnCl4—H2O引发聚合。聚合速率Rp∝[SnCl4][H2O][异丁烯]2。起始生成的聚合物的数均相对分子质量为20,000,1g聚合物中含3.0×10-5mol的羟基,不含氯。

写出该聚合的引发、增长、终止反应方程式。推导聚合反应速率和聚合度的表达式。 推导过程中所做的假设。什么情况下对水或SnCl4是零级对异丁烯是一级反应? 5、 以正丁基锂和少量单体反应,得一活性聚合物种子(A)。以10-2mol的A和2mol的新鲜单体混合,50分钟内单体有一半转化为聚合物,计算kp值。假定无链转移反应。

6、 用萘钠的四氢呋喃溶液为引发剂引发苯乙烯聚合。已知萘钠溶液的浓度为1.5mol/L,苯乙烯为300g。试计算若制备相对分子质量为30,000的聚苯乙烯需加多少毫升引发剂溶液?

-4

若体系中含有1.8×10mol的水,需加多少引发剂?

7、 2.0mol/L的苯乙烯-二氯乙烷溶液在25℃下,用4.0×10-4mol/L的硫酸引发聚合。计算起始聚合度。计算时用表4-5的数据,Cs=4.5×10-2。

8、 以正丁基锂为引发剂,环己烷为溶剂,合成线型三嵌段共聚物SBS。单体总量是150g。丁基锂环己烷溶液的浓度为0.4mol/L。单体的转化率为100%。若使共聚物的组成(苯、丁比)为S/B=40/60(重量比),数均相对分子质量1×105。试计算需丁二烯和苯乙烯各多少克,需丁基锂溶液多少毫升?

9、 在搅拌下依次向装有四氢呋喃的反应釜中加入0.2mol n-BuLi和20kg苯乙烯。当单体聚合一半时,向体系中加入1.8g水,然后继续反应。假如用水终止的和继续增长的聚苯乙烯的分子量分布指数均是1,试计算:

①水终止的聚合物的数均相对分子质量;

②单体完全聚合后体系中全部聚合物的数均相对分子质量; ③最后所得聚合物的相对分子质量分布指数。

10、在离子聚合反应过程中,能否出现自动加速现象?为什么?

11、写出用阴离子聚合方法合成四种不同端基(—OH、—COOH、—SH、—NH2)的聚丁

17

二烯遥爪聚合物的反应过程。

12、增加溶剂极性对下列各项有何影响?

(1)活性种的状态

(2)聚合物的立体规整性

±

(3)阴离子聚合的kp-、kp;

(4)用萘钠引发聚合的产物的单分散性; (5)n-C4H9Li引发聚合的产物的单分散性。 13、比较逐步聚合、自由基聚合、阴离子聚合的

(1)转化率和时间的关系;

(2)聚合物相对分子质量与时间的关系。

14、预确定电离辐射引发的某一特定单体的聚合反应是按照自由基机理还是离子型机理进 行,适用的实验方法是什么?

15、举例说明异构化聚合和假阳离子聚合反应。

第四章 离子型聚合习题答案

1

C CH3 OOH + Fe22+.

OOCOOC可引发以下五种单体进行自由基聚合。CH2CHCH2CH3CH3CCH2CCH2CHCCH2COOCH3CH3CH2CHClNa、n-BuLi为阴离子聚合引发剂,可引发

CH2CHCH2CH3CCH2CNCCNCH2CH3CH2CHCCH2CCH3COOCH3OHCH

六种单体进行阴离子聚合。 H2SO4、BF3 + H2O为阳离子聚合引发剂,可引发

CH2CHCH2CH3CH3CCH2CCH3CH2CHCCH2CH3

OCH3CH3HCHCH2CHCHCH3CH2CHOCCH3CH3七种单体进行阳离子聚合,其中第六种单体聚合时发生异构化聚合。2.

离子对:带有相反电电荷的离子当二者间的距离小于某一临界距离时,可称为离子对。 异构化聚合:在聚合链增长过程中,伴有分子内重排的聚合常称为异构化聚合。 活性聚合;没有链转移和链终止的聚合反应称为活性聚合。 3.=6.67×104。 5.kp=2.31(l/mol·S) 6.

① 问:需加引发剂13.3ml。 ② 问:需加引发剂13.46ml。 7.0=53。 8. ① AB

A+B-A+//B-18

A+ + B-

极性增加,使上述各种活性中心的平衡向右移动。 ② 极性增加,松对和自由离子增加,立构规整性变差。 ③ 阴离子聚合的kp-基本不受影响;

±

极性增加,松对比例增加, kp增加。 ④ 基本不变。 ⑤ 分布变窄。 9.

(1) 逐步聚合:单体转化率在反应开始后的短时间内就达很高,随后,随时间延长,转化率增加极其缓慢。

自由基聚合:典型的转化率(C%)与时间(t)曲线为S形,反应初期C%与t可呈线性关系,中期可能出现自动加速现象,后期C%随时间延长增长缓慢。 阴离子聚合:常常可实现活性聚合。转化率与时间有如下关系:㏑[1/(1-C%)]=kt。

(2) 逐步聚合:分子量随时间延长而逐步增加,高分子量聚合物需数小时的长时间才能生成。

自由基聚合:高分子量的聚合物瞬间生成,在反应任一时刻形成的大分子的分子量相差无几。有自动加速现象时,分子量增加。 阴离子聚合(活性):聚合物分子量随时间增加而增加,二者有如下关系:㏑[1/(1-a)]=k’t(a、k’为常数)。

10.可向体系中添加阻聚剂的方法来验证:

若加入自由基聚合阻聚剂,如DPPH等,如聚合反应停止,说明聚合为自由基聚合机

理,如不受影响,则为离子型聚合机理。

若加入离子型聚合阻聚剂,如水、醇等,反应停止,说明是按离子型机理进行的。如对

反应基本无影响,则表明反应是按自由基机理进行的。

11.异构化聚合:3-甲基-1-丁烯的阴离子聚合,在链增长过程中,活性链末端会发生H-:

的转移,使仲碳阳离子转变成更稳定的叔碳阳离子:

R++

重排后的活性中心进行链增长,就在主链上形成了1’3-结构的重复单元,这种在聚合过程中活性中心发生分子内重排的聚合反应称为异构化聚合。

假阳离子聚合:在烯烃的阳离子聚合过程中,有时增长活性中心不是碳阳离子,而是共价键结构,这样的聚合称为假阳离子聚合。例如,HclO4在二氯甲烷中引发苯乙烯进行阳离子聚合,聚合第二阶段,体系中未检测出离子,认为共价酯键参与链增长:单体插入共价酯键中增长:

St+ + ClO4-St+ClO4-StOClO3CH2CHHCH3CCH3+RCH2CHCHH3CCH3CH3RCH2CH2C+CH3自由离子离子对 产物的分子量分布出现两个峰,说明聚合过程中有两种不同的活性中心。

共价酯键

第五章 配位聚合习题

1.举例说明聚合物的异构现象,如何评价聚合物的立构规整性? 2.写出下列单体聚合后可能出现的立构规整聚合物的结构式及名称: (1) CH2=CH-CH3 (2) CH2-CH-CH3 O

(3) CH2=CH-CH=CH2 (4) CH2=CH-CH=CH-CH3 CH3

(5) CH2 =C-CH=CH2

19

3.简述配位聚合(络合聚合、插入聚合),定向聚合(有规立构聚合),Ziegler-Natta聚合的特点,相互关系。

4.试述控制聚合物立体结构的方法,并各举一例。 5.简述Ziegler-Natta催化剂开发的意义。

6.简述两组分Ziegler-Natta催化剂、三组分Ziegler-Natta催化剂、载体型Ziegler-Natta催化剂和茂金属催化剂的组成和特点。

7.比较阳离子引发剂、阴离子引发剂和Ziegler-Natta催化剂有何异同。

8.使用Ziegler-Natta催化剂时须注意什么问题,聚合体系、单体、溶剂等应采用何种保证措施?聚合结束后用什么方法除去残余催化剂? 9.丙烯进行自由基聚合、离子聚合及配位阴离子聚合时能否形成高分子聚合物?为什么?怎样分离和鉴定所得聚合物为全同聚丙烯?

10.比较合成高压聚乙烯和低压聚乙烯在催化剂、聚合机理、产物结构上的异同。 11.用Ziegler-Natta催化剂进行乙烯、丙烯聚合时,为何能用氢气调节聚合物的相对分子质量?

12.在Ziegler-Natta催化剂引发а-烯烃聚合的理论研究中曾提出过自由基、阳离子、络合阳离子和阴离子机理,但均未获得公认。试对其依据和不足之处加以讨论。

13.简述支持Natta的双金属机理和Cossee-Arlman的单金属机理的实验依据,这两种机理各解释了什么问题及存在的主要不足。

14.简述Natta的双金属机理和Cossee-Arlman的单金属机理的基本论点。 15.二烯烃配位聚合催化剂主要有哪几类?

第五章 配位聚合习题答案

1.

① 异构包括结构异构和立体异构,其中立体异构还包括几何异构、顺反异构、构象异构。 ② 可用聚合物的立构规整度来评价。立构规整度;立构规整聚合物占全部聚合物的分数。 2.

① 全同聚丙烯 间同聚丙烯

② 全同聚环氧丙烷 间同聚环氧丙烷

③ 顺1,4-聚丁二烯 反1,4-聚丁二烯 全同1,2-聚丁二烯 间同1,2-聚丁二烯 ④ CH2=CH-CH=CH2-CH3

1 2 3 4 5 1,4-聚合:

全同顺1,4-聚-1,4戊二烯 间同顺1,4-聚-1,4戊二烯 全同反1,4-聚-1,4戊二烯 间同顺1,4-聚-1,4戊二烯 1,2聚合:

全同1,2-(甲基顺式)聚-1,4戊二烯 全同1,2-(甲基反式)聚-1,4戊二烯 间同1,2-(甲基顺式)聚-1,4戊二烯 间同1,2-(甲基反式)聚-1,4戊二烯 3,4-聚合:

全同3,4(甲基全同)-聚-1,4戊二烯 间同3,4(甲基全同)-聚-1,4戊二烯

⑤ 全同1,4-聚异戊二烯 间同1,4-聚异戊二烯 全同3,4-聚异戊二烯 间同3,4-聚异戊二烯 3.

① 配位聚合从反应历程定义,主要是从单体如何与活性中心发生作用角度分析反应,主要特点参书151页。

② 定向聚合从形成的产物角度定义,凡形成立构规整聚合物的聚合均属定向聚合,不论反应历程如何。

③ Ziegler-Natta聚合的主要特点是以Ziegler-Natta催化剂催化的聚合过程。

20