如何提高OHO生物工艺中焦化废水处理效率 联系客服

发布时间 : 星期日 文章如何提高OHO生物工艺中焦化废水处理效率更新完毕开始阅读84aa8af20875f46527d3240c844769eae009a30f

3.1.2 生物出水中的含氮化合物

经过生物处理,含氮化合物一部分转移到污泥相中,一部分以N2和N2O的形式转移到大气中,残余组分留在生物出水中.焦化废水生物出水中的有机氮化合物如表 4所示,可以看出,酰胺类为主要的新生成有机氮化合物,可能来源于有机腈类化合物降解的中间产物.生物出水中的有机氮化合物减少为32种,表达为总氮的浓度约为1 mg · L-1,经过O/H/O生物工艺,即生物的氧化/还原/氧化过程,焦化废水中的含氮化合物从多组分与多种形态转化为NO-2-N、NO-3-N等高价状态,NO-2-N、NO-3-N所占比例从1%增加到70%,体现了生物处理过程中各种含氮化合物的归趋作用.

表4 焦化废水生物出水中有机氮化合物的存在情况

3.2 O/H/O生物工艺中含氮化合物的转化 3.2.1 运行效果及含氮化合物的综合分析 从采样时间内水质平均值数据及其变化(表 5)可以分析O/H/O生物工艺各工艺段的处理效果.数据显示,采用生物三相流化床O/H/O组合工艺处理金牛天铁集团焦化废水,可以在设计负荷条件下稳定运行,生物处理出水平均COD、挥发酚、NH+4-N、氰化物、硫化物浓度分别为265.1、0.25、12.7、0.63、0.46 mg · L-1.挥发酚、硫化物、NH+4-N等污染物指标能达到直接排放标准的要求,COD、氰化物经后续的混凝与臭氧氧化处理后达到《污水综合排放标准》(GB8978—1996)第二类污染物最高允许排放浓度一级标准的要求.

表5 各工艺段主要水质指标平均值数据

从表 5可以看出,生物进水总氮略有下降,这是由于在预处理阶段加入了硫酸亚铁,Fe2+与氰化物形成亚铁蓝(Fe[Fe(CN)6])、铁蓝(Fe4[Fe(CN)6]3)沉淀引起的,这与生物进水中氰化物浓度的下降相对应.两级好氧段中总氮的去除量分别为115.8 mg · L-1和59.9 mg · L-1,好氧段内总氮去除的原因可以归结如下:①好氧微生物按照BOD ∶ N ∶ P约为100 ∶ 5 ∶ 1的比例利用废水中的含氮化合物作为氮源,合成自身细胞物质,水相中的总氮转移到污泥相中;②在实际工程中,反应器内部存在局部的缺氧区,好氧池内的同步硝

化反硝化得以实现;③系统中存在好氧反硝化菌,在好氧条件下进行反硝化,将NH+4-N直接转化为N2O;④少量的氨分子在曝气过程中被逸散.

生物处理过程中各类含氮化合物占总氮的比例如图 1所示.在焦化废水处理的全过程中,无机氮化合物是总氮的主要贡献者,所占比例均高于 75.0%.原水中,无机氮化合物占总氮的比例为82.5%,其中以硫氰化物和氨氮为主.一级好氧流化床中,相对于难降解的有机氮化合物,微生物优先降解挥发酚、氰化物和硫氰化物等,反应器内几乎没有硝化作用发生,氰化物和硫氰化物所占比例下降为1.1%和23.4%,有机氮和氨氮的比例相应上升到24.1%和49.4%.水解流化床中,有机氮化合物水解释放出氨氮,致使氨氮比例上升到71.4%,而有机氮化合物比例降至2.2%.二级好氧流化床中,氰化物和硫氰化物被好氧生物氧化,发生硝化作用,硝态氮是生物出水中总氮的主要贡献者,所占比例超过75.0%.

图 1 生物处理过程中各类含氮化合物在总氮中的组成特征

生物过程中影响含氮化合物转化及总氮去除的因素包括pH、HRT、溶解氧、污泥龄与污泥浓度、碳氮比、硝化液回流比、氧化还原电位等.针对原水总氮含量高于300 mg · L-1的焦化废水,若要达到新国标中规定的20 mg · L-1总氮排放限值,需要强化一级好氧反应器使之实现局部硝化反应,并且二级好氧段实现完全硝化,以回流比必须大于1 ∶ 1的运行条件,保证水解反应器内短程反硝化反应的高效进行,并以N2的形式逸出.两者的结合,需要在反应器水力停留时间与回流比的取值中求得优化.为实现水解反应器中的短程反硝化,需要追求一级好氧反应器条件的精密控制,使部分低价含氮化合物转化为NO-2-N.为充分发挥微生物同化作用对总氮的去除作用,避免微生物进入内源呼吸期,细胞溶胞再次向水中释放出总氮,需要严格控制各反应池污泥停留时间,定期排泥.为保证硝化反硝化过程的顺利进行,需要在二级好氧反应器中提供足够的溶解氧、水解反应器中提供充足的可利用碳源.上述发生的总氮减排过程可以被分解为3个不同功能的反应器内实现. 3.2.2 一级好氧流化床

实际工程中流化床的设计结构主要包括三段导流筒及三相分离区.流化床内三段导流筒使流体实现三重循环,强化了流化床的混合传质性能;流化床两侧设置的三相分离区使固液分离后的活性污泥由分离区底部斜壁自吸入主反应器的降流区内,避免出水带走菌胶团,保证反应器内的微生物量并实现污泥减量化.一级好氧流化床以空气作为动力,实现反应器内

废水与微生物之间良好的混合和传质,其作用主要是最大限度地降低有机污染物浓度.运行过程中需要保证充足的曝气量,以实现流态化操作,提供溶解氧,同时需要投加磷盐作为微生物生长的营养元素.

文献报道,氰化物和硫氰化物都可以在好氧和厌氧条件下被微生物降解,但氰化物在厌氧条件下降解速率较慢,硫氰化物的厌氧降解一般是在硝酸盐存在的条件下进行的.图 2为氰化物和硫氰化物在一级好氧流化床的运行数据,可以看出,在HRT为40 h、溶解氧控制在1~3 mg · L-1的情况下,一级好氧流化床氰化物和硫氰化物进水浓度为19.0~36.1 mg · L-1和482.4~672.1 mg · L-1,出水浓度分别为3.3~4.2 mg · L-1和87.8~309.1 mg · L-1,去除率达85.6%和67.5%.在O/H/O生物处理系统中,设计一级好氧流化床以去除酚类等有机污染物为主,在酚类进水浓度在902~1100 mg · L-1 的情况下,出水挥发酚平均浓度为11.6 mg · L-1,平均去除负荷为0.54 kg · m-3 · d-1. 因此,一级好氧流化床可实现氰化物、硫氰化物与酚类的同步降解,并且酚类的降解优先.

图 2 一级好氧流化床硫氰化物、氰化物的处理效果

从表 3可以看出,焦化废水中的有机腈类化合物都是带苯环的芳香族腈.与脂肪族腈相比,芳香族腈更难降解.一般将有机腈类化合物与氰化物、硫氰化物统称为含氰化合物,因此,有机腈类化合物的降解行为与氰化物、硫氰化物表现出一定的相似性,主要在好氧段进行.一级好氧段中有机腈类化合物的生物降解主要有两种途径:第一种途径是在腈水解酶催化作用下,有机腈化合物水解成相应的酸和氨氮;第二种途径是有机腈化合物首先水解成对应的氨基化合物,然后再进一步水解成对应的酸和氨氮,这两步分别由腈水合酶和酰胺酶催化进行.

苯胺是焦化废水中主要的胺类化合物,一级好氧出水的苯胺浓度为28.0~33.1 μg · L-1,转化率高达99.8%.苯胺好氧降解主要有两种代谢途径,即邻位(ortho)和间位