湿法烟气脱硫的原理 联系客服

发布时间 : 星期一 文章湿法烟气脱硫的原理更新完毕开始阅读85f8e4cb06a1b0717fd5360cba1aa81144318f1b

近年来,我国燃煤工业锅炉及窑炉烟气脱硫技术中,吸收塔的防腐及耐磨损已取得显著进展,致使烟气脱硫设备的运转率大大提高。

吸收塔、烟道的材质、内衬或涂层均影响装置的使用寿命和成本。

吸收塔体可用高(或低)合金钢、碳钢、碳钢内衬橡胶、碳钢内衬有机树脂或玻璃钢。

美国因劳动力昂贵,一般采用合金钢。德国普遍采用碳钢内衬橡胶(溴橡胶或氯丁橡胶),使用寿命可达10年。腐蚀特别严重的如浆池底和喷雾区,采用双层衬胶,可延长寿命25%。ABB早期用C-276合金钢制作吸收塔,单位成本为63美元/KW,现采用内衬橡胶,成本为22美元/KW。

烟道应用碳钢制作时,采用何种防腐措施取决于烟气温度(是否在酸性露点或水蒸汽饱和温度以上)及其成分(尤其是SO2和H2O含量)。

日本日立公司的防腐措施是:烟气再热器、吸收塔入口烟道、吸收塔烟气进口段,采用耐热玻璃鳞片树脂涂层,吸收塔喷淋区用不锈钢或碳钢橡胶衬里,除雾器段和氧化槽用玻璃鳞片树脂涂层或橡胶衬里。

(6)除雾

湿法吸收塔在运行过程中,易产生粒径为10~60m的“雾”。“雾”不仅含有水分,它还溶有硫酸、硫酸盐、SO2等,如不妥善解决,任何进入烟囱的“雾”,实际就是把SO2排放到大气中,同时也造成引风机的严重腐蚀。

因此,工艺上对吸收设备提出除雾的要求。被净化的气体在离开吸收塔之前要进行除雾。通常,除雾器多设在吸收塔的顶部。

目前,我国相当一部分吸收塔尚未设置除雾器,这不仅造成SO2的二次污染,对引风机的腐蚀也相当严重。

脱硫塔顶部净化后烟气的出口应设有除雾器,通常为二级除雾器,安装在塔的圆筒顶部(垂直布置)或塔出口的弯道后的平直烟道上(述评布置)。后者允许烟气流速高于前者。对于除雾器应设置冲洗水,间歇冲洗除雾器。净化除雾后烟气中残余的水分一般不得超过100mg/m3,更不允许超过200mg/m3,否则含沾污和腐蚀热交换器、烟道和风机。 (7)净化后气体再加热

在处理高温含硫烟气的湿法烟气脱硫中,烟气在脱硫塔内被冷却、增湿和降温,烟气的温度降至60℃左右。将60℃左右的净化气体排入大气后,在一定的气象条件下将会产生“白烟”。

由于烟气温度低,使烟气的抬升作用降低。特别是在净化处理大量的烟气和某些不利的气象条件下,“白烟”没有远距离扩散和充分稀释之前就已降落到污染源周边的地面,容易出现高浓度的SO2污染。

为此,需要对洗涤净化后的烟气进行二次再加热,提高净化气体的温度。被净化的气体,通常被加

. . .

热到105~130℃。为此,要增设燃烧炉。燃烧炉燃烧天然气或轻柴油,产生1000~1100℃的高温燃烧气体,再与净化后的气体混对。

这里应当指出,不管采用何种方法对净化气体进行二次加热,在将净化气体的温度加热到105~130℃的同时,都不能降低烟气的净化效率,其中包括除尘效率和脱硫效率。

为此,对净化气体二次加热的方法,应权衡得失后进行选择。

吸收塔出口烟气一般被冷却到45~55℃(视烟气入口温度和湿度而定),达饱和含水量。是否要对脱硫烟气再加热,取决于各国环保要求。

德国《大型燃烧设备法》中明确规定,烟囱入口最低温度为72℃,以保证烟气扩散,防止冷烟雾下沉。因吸收塔出口与烟囱入口之间的散热损失约为5~10℃,故吸收塔出口烟气至少要加热到77~82℃。

据ABB或B&W公司介绍,美国一般不采用烟气再加热系统,而对烟囱采取防腐措施。如脱硫效率仅要求75%时,可引出25%的未处理的旁通烟气来加热75%的净化烟气,德国第1台湿法脱硫装置就采用这种方法。德国现在还把净化烟气引入自然通风冷却塔排放的脱硫装置,籍烟气动量(质量 速度)和携带热量的提高,使烟气扩散的更好。

烟气再加热器通常有蓄热式和非蓄热式两种形式。蓄热式工艺利用未脱硫的热烟气加热冷烟气,统称GGH。蓄热式换热器又可分为回转式烟气换热器、板式换热器和管式换热器,均通过载热体或热介质将热烟气的热量传递给冷烟气。

回转式换热器与电厂用的回转式空气预热器的工作原理相同,是通过平滑的或者带波纹的金属薄片载热体将热烟气的热量传递给净化后的冷烟气,缺点是热烟气会泄露到冷烟气中。

板式换热器中,热烟气与冷烟气逆流或交*流动,热交换通过薄板进行,这种系统基本不泄露。管式加热器是通过中间载体水将热烟气的热量传递给冷烟气,无烟气泄露问题,用于年满负荷运行在4000~6500h的脱硫装置。

非蓄热式换热器通过蒸汽、天然气等将冷烟气重新加热,又分为直接加热和间接加热。直接加热是燃烧加热部分冷烟气,然后冷热烟气混合达到所需温度;间接加热是用低压蒸汽(≥2×105Pa)通过热交换器加热冷烟气。这种加热方式投资省,但能耗大,使用于脱硫装置年运行时间4000h-6500h的脱硫装置。

4 湿法烟气脱硫装置各腐蚀区域的腐蚀分析 4.1 烟气输送及热交换系统

4.1.1 该系统主要腐蚀介质及腐蚀环境

该系统主要腐蚀介质及腐蚀环境为两类:一是经流换热器原烟气进口烟道、换热器降温段、换热器原烟气出口至吸收塔进口烟道、原烟气旁路烟道、烟气挡板的高温(170-110℃)含尘(3-5%)含SO2(1-4%)

. . .

原烟气;二是经流吸收塔净烟气出口至除雾器、除雾器至换热器净烟气进口烟道、烟气增压风机、换热器升温段的低温(45-90℃)除尘(0.3-0.5%)脱SO2(3×10-4-4×10-4)净烟气。 4.1.2 该系统主要腐蚀特点分析

(1) 亚硫酸露点腐蚀:高温原烟气在正常运行条件下因无水份存在,对装置几乎无腐蚀,但在三种情形下将导致腐蚀。

一是列管式换热器管程因某种原因穿孔,导致冷却水泄漏,致使高温原烟气所含SO2与水反应生成亚硫酸,形成高温亚硫酸还原性腐蚀。

二是迴转式蓄热换热器清洗水外泻或蓄集形成高温亚硫酸还原性腐蚀。

三是在装置开停车时,因环境大气湿度影响,装置内残留的气态SO2被钢基体表面凝聚水吸收生成亚硫酸,形成亚硫酸露点腐蚀(虽然烟道外保温可延迟钢基体表面凝聚水生成时间,但无法完全防止该类腐蚀的形成)。

低温净烟气虽只残存少量SO2且经除雾器除去大部分水雾,但微量水和SO2的存在及环境大气湿度在装置开停车时形成的钢基体表面凝聚水仍会形成缓慢的亚硫酸还原性露点腐蚀(如重庆珞璜除雾器出口净烟气烟道,原设计不防腐,经多年运行可看到明显腐蚀现象,现已实施鳞片防腐)。

(2) 防腐蚀衬层高温热应力失效:鉴于上述腐蚀因素的存在,通常在原烟气流经区域采用1.2~1.5mm厚耐高温鳞片涂料防腐,但在实际使用中该区防腐蚀衬层时常发生龟裂、开裂、剥落等腐蚀失效现象,其原因主要有三:

一是由于火电厂环保脱硫装置开停车较频繁,使生成的热应力处于间歇性交变状态中,加速衬层的热应力腐蚀失效;四是鳞片涂层属脆性材料,衬层内热应力的长期存在,特别是在热应力交变期内易导致涂层龟裂、开裂、剥落等物理腐蚀失效;

二是衬里材料选择不合理,树脂耐温能力不足,在高温热应力作用下形成热应力开裂。

三是在衬层施工中,存在有衬层厚薄不均、界面粘接不良、固化剂分布不均等局部质量缺陷,使环境热应力易于在衬层薄弱处形成应力集中,导致衬层热应力破坏。

(3) 防腐蚀衬层烟尘磨损失效:在配套有电除尘设备的火力发电装置中,该类腐蚀失效虽有但并不严重,若无电除尘设备,由于烟气中含有大量粉尘,则磨损较严重。低温净烟气烟道因含尘量极小,此类腐蚀失效可不作重点考虑。

(4) 防腐蚀衬层高温碳化烧蚀失效:正常情况下从电除尘排出的原烟气温度为140~150℃,此温度不足以使耐高温鳞片衬里高温碳化烧蚀,但当锅炉的蒸汽预热器、省煤器、空气预热器等设备运行不正常时,电除尘排出的原烟气温度将达160℃以上,此温度将导致大多数耐高温鳞片衬里材料由表及里缓慢高温碳化,此类衬里材料碳化并不严重影响衬里的完整性及耐蚀性,但衬里一旦因热应力作用形成开裂,

. . .

则裂纹的发展加快,介质沿裂纹渗透速度加快,导致衬里局部整块剥离。当温度超过180℃时,长期高温作用会导致大多数耐高温鳞片衬里由表及里烧蚀碳化,此种情形将导致衬里严重失强减薄,其腐蚀破坏是致命的。

(5) 液滴冲击磨蚀:当高速流动的烟气中夹带水滴(形成双相流)时,易对烟道壁衬里,特别是对迎风面烟道壁衬里(如导流板及弯烟道壁)产生液滴冲击磨蚀(即空泡腐蚀),形成力学疲劳破坏。水相来源一是换热器的清洗水,二是列管式换热器的泄漏水。因液滴在烟气中分布的随机性和液滴的独立存在特点,使衬层承受着连续点击交变冲击作用,导致衬层力学疲劳破坏。 (6) 衬里震颤疲劳破坏:衬层在下述条件下易产生震颤疲劳破坏:

一是该区烟道结构设计强度、刚性不足,特别是烟道布置受环境所限,弯道、过流截面变化较大时,高速流动的烟气在烟道中过流时会因弯道及过流截面变化的影响,产生较大的压力变化,形成不稳定流动,导致烟道结构震颤,使本来就高温失强的衬里形成疲劳腐蚀开裂,严重时形成大面积剥落。

二是在烟道结构强度设计时,出于结构补强需要,采用细杆内支承补强,当高速流动的烟气在烟道中过流时,因烟气冲击压力作用引发支承细杆抖动变形,导致支承杆与烟道壁焊接区衬层开裂。由于烟气引发的结构震颤是通过衬层传导给金属基体的,而衬层与基体是通过界面底漆粘接联接的,故此类破坏往往发生在界面底漆粘接层,其对衬层的破坏是非常致命的。 4.2 SO2吸收及氧化系统:

4.2.1 该系统主要腐蚀介质及腐蚀环境 该系统主要腐蚀介质及腐蚀环境为三类:

一是烟气中所含的SO2。当含硫烟气处于脱硫工况时,在强制氧化环境作用下,烟气中的SO2首先与水反应生成H2SO3及H2SO4,再与碱性吸收剂反应生成亚硫酸盐,经强制氧化生成硫酸盐沉淀分离。而此阶段,工艺环境温度正好处于稀(亚)硫酸活化腐蚀温度状态,其腐蚀速度快,渗透能力强,故其中间产物H2SO3及H2SO4是导致设备腐蚀的主体。

二是烟气中所含NOX、吸收剂浆液中的水及石灰石、水中所含的氯离子对金属基体具有一定腐蚀能力。 三是吸收塔入口烟道及喷浆区环境温度急变,吸收剂浆液中固体含量大,其温差热应力及固态料对衬层具有较强的腐蚀破坏能力。 4.2.1 该系统主要腐蚀特点分析

(1) 防腐蚀衬层稀(亚)硫酸渗透失效:导致介质渗透腐蚀失效原因有三:

一是室温条件下固化成型的有机非金属树脂均为非致密体,固化树脂基体中存有大量的分子级空穴; 二是衬里材料均为复合材料,不同相材料界面间总存在有界面孔隙;

三是衬里材料在混配、施工过程中,必然会生成微气泡、微裂纹等缺陷。这就为介质迁移性渗透提

. . .