高温相变材料的研究进展和应用 联系客服

发布时间 : 星期二 文章高温相变材料的研究进展和应用更新完毕开始阅读8739854c767f5acfa1c7cd37

高温相变材料的研究进展和应用

摘要:随着全球性能源与环境的不断恶化,能源充分利用和新能源开发成为业界

关注的重点。相变储热是利用相变材料在其物相变化过程中从环境吸收热(冷)量或向环境释放热(冷)量,从而达到能量的储存或释放的目的,并能与新能源结合应用。分析了高温相变材料的种类和各自特点,介绍了其在各行各业的应用情况,并对高温相变材料的未来发展进行了展望。

关键词:相变材料;储热材料;相变 1引言

物质相变过程是一个等温或近似等温过程,在这个过程中伴随有能量的吸收或释放。相变储热是利用相变材料在其相变过程中,从环境吸收或释放热量,达到储能或放能的目的。高温相变材料具有相变温度高,储热容量大,储热密度高等特点,它的使用能提高能源利用效率,有效保护环境,目前已在太阳能热利用、电力的“移峰填谷”、余热或废热的回收利用以及工业与民用建筑和空调的节能等领域得到了广泛的应用。现阶段 ,人们关心比较多的新能源是太阳能 ,但是太阳能利用和废热回收存在时间和空间上的不匹配的问题。相变储能材料可以从环境中吸收能量和向环境释放能量 ,较好地解决了能量供求在时间和空间上不匹配的矛盾 ,有效地提高了能量的利用率。同时相变储能材料在相变过程中温度基本上保持恒定 ,能够用于调控周围环境的温度 ,并且能重复使用。相变储能材料的这些特性使得其在电力“ 移峰填谷 ” 、 工业与民用建筑和空调的节能、 纺织品以及军事等领域有着广泛的应用前景。

2相变储热技术

1

储热方法通常有3种:显热储热、化学反应储热和潜热储热(相变储热)。相变储热可以实现能量供应与人们需求在时间和空间达到一致的目的,又具有节能降耗的作用。相变储热材料按相变方式一般分为4类:固—固相变、固—液相变、固—气相变及液—气相变材料圈;按相变温度范围可分为高温、中温和低温储热材料;按材料的组成成分可分为无机类和有机类(包括高分子类)储热材料。由于固一气相变材料相变时体积变化太大,使用时需要很多的复杂装置,在实际应用中很少采用。相变储热材料在储热、放热过程中,温度波动范围很小,材料近似恒温,故可控制温度。其储热容量大,储热密度高,单位质量、单位体积的储热量要远远超过显热储热材料;且较之于化学反应储热,相变储热具有设备简单、体积小、设计灵活、使用方便等优势。

3高温相变储热材料

3.1高温固—液相变材料

固—液相变材料是指在温度高于相变点时物相由固相变为液相,吸收热量当温度下降时物相又由液相变为固相,放出热量的一类相变材料。目前固—液相变材料主要包括结晶无机物类和有机物类2种。无机盐高温相变材料主要为高温熔融盐、部分碱、混合盐。高温熔融盐主要有氟化物、氯化物、硝酸盐、硫酸盐等。它们具有较高的相变温度,从几百摄氏度至几千摄氏度,因而相变潜热较大。例如LiH相对分子质量小而熔化热大(2 840 J/g)。碱的比热容高,熔化热大,稳定性好,在高温下蒸气压力很低,且价格便宜,也是一种较好的中高温储能物质。例如NaOH在287℃和318℃均有相变,比潜热达330 J/g,在美国和日本已试用 于采暖和制冷工程领域。混合盐熔化热大,熔化时体积变化小,传热较好,其最大优点是熔融温度可调,可以根据需要把不同的盐配制成相变温度从几百摄氏度

2

至上千摄氏度的储能材料。表1列出了部分无机盐高温相变储能材料热物性值阻。 3.2高温固—固相变材料

固—固相变蓄热材料是利用材料的状态改变来蓄热、放热的材料,与固一液相变材料相比较,固一固相变蓄热材料的潜热小,但它的体积变化小、过冷程度轻、无腐蚀、热效率高、寿命长,其最大的优点是相变后不生成液相,不会发生泄漏,对容器要求不高。具有较大技术经济潜力的高温固—固相变蓄热材料目前有无机盐类、高密度聚乙烯坷。无机盐类材料主要是利用固体状态下不同种晶型的变化进行吸热和放热,通常它们的相变温度较高,适合于高温范围内的储能和控温,目前实际中应用的主要有层状钙钛矿、Li。SO.、NI-hSCN、KHF2等物质。其中, KHF2的熔化温度为196℃,熔化热为142 kJ/kg;NH,SCN从室温加热到150℃发生相变时,没有液相生成,相转变焓较高,相转变温度范围宽,过冷程度轻,稳定性好,不腐蚀,是一种很有发展前途的储能材料。高密度聚乙烯的特点是使用寿命长、性能稳定、基本无过冷和分层现象、有较好力学性能、便于加工成形。此类固一固相变材料,具有较好的实际应用价值,熔点通常都在125℃以上,但高密度聚乙烯在加热到100℃以上会发生软化,一般通过辐射交联或化学交联之后,其软化点可以提高到150℃以上。 3.3高温复合相变材料

近年来,高温复合相变储能材料应运而生,其既能有效克服单一的无机物或有机物相变储能材料存在的缺点,又可以改善相变材料的应用效果以及拓展其应用范围。因此,研制高温复合相变储能材料已成为储能材料领域的热点研究课题之一。研究表明,在高温储热系统中,特别是储热系统工作温区较大的高温储热 系统,其组合相变材料储热系统可以显著提高系统效率,减少蓄热时间,提高潜

3

热蓄热量,而且能够维持相变过程相变速率的均匀性。

图l、图2是组合相变材料较之于单一组分的相变材料的性能比较。其中各单一PCM的相变温度均在30~70℃之间,而各鲴合PCM接组分相变温度分为55 cc、50℃、45℃;60℃、50℃、加℃;65℃、50℃、30℃;70℃、50℃、30℃的4种组合方式。相变温度T.=50℃的相变材料作为基准PCM,且其质量分数为图中横坐标,各组合PCM中其余2种材料的质量比为1:1。从图1可以看到,对于4种组合PCM,在不同的基准PCM质量分数下,其相变完成时间大多数都少于单一PCM,这说明利用组合PCM可以使系统储热速率增大。而由图2可知,在不同基准PCM质量分数下,A、B、C、D这4类组合PCM都存在最大潜热储热量,较单一PCM的潜热储热量分别提升了8.5%、15.3%、13.8%和11.7%。

相变材料研究的发展迅速,但大多数均停留在实验阶段,进行市场化和产业化的情况却比较少。而在如今全球严峻的能源大环境下,相变材料具有的节能优势又是被社会所需要的。因而如何将产、学、研有机的结合起来是当前应着力解决的重点问题之一。再者,随着相变材料的优势逐渐被各能源相关领域所认同,相变材料的研究越发深入,其种类也越来越多。但是在很多应用实践中,却还未确

4