zemax操作详解 联系客服

发布时间 : 星期四 文章zemax操作详解更新完毕开始阅读8e36a768a45177232f60a21a

视场角一般用角度表示。角度的测量是以物空间Z轴上近轴入瞳位置作为测量点来衡量的。正视场角表示这一方向上的光线有正斜率,对应的物方坐标为负。 ZEMAX运用一下公式将X、Y视场角转换为光线的方向余弦: tanθx=l/n tanθy=m/n l2+m2+n2=1

这里,1、m、n分别代表x、y、z方向的方向余弦。

如果用物高或者象高来定义视场,则高度用透镜单位来表示。当用近轴象高定义视场时,高度是指主光线在象面上的近轴象高,在系统存在畸变时,实际的主光线位置会不同。

当用实际象高来定义视场时,高度为主光线在象面上的实际高度。 光阑位移

光阑位移是ZEMAX支持的一种系统孔径类型。这是指入瞳位置、物空间数值孔径、象空间F/#数、光阑面半径中只要有一个确定。其他的也都确定下来了。所以,设定号孔径光阑半径,其他值无需再定义了,是定义系统孔径的非常有效的方法。当光阑面为实际的不变

光阑时,比如设计无焦度校正板光学系统时,这种方法更为方便。 玻璃

玻璃的输入是在“玻璃”这一栏中输入玻璃名称。可以查看玻璃名称,也可以通过玻璃库工具输入新玻璃。详见“使用玻璃库”这一章 六边环(Hexapolar rings)

在诸如点列图的计算时,ZEMAX通常选用一种光线分布。光线分布指入瞳处光线的分布形式。六边形式是一种以旋转对称来分布光线的方式。具体而言是在中心光线周围有一圈一圈的光环。第一环包括6根光线,围绕入瞳按每两根之间60度分布,第一根 光线始于0度(即瞳面X轴方向)。第二环有12根光线(此时,光线总数为19,因为中心光线可以认为是第零环)。第三环有18根光线。每下一环都比上一环多6根光线。

很多需要确定取样光线的功能(比如点列图)都使用六边环数来确定光线的树目。如果六边环样本密度为5,不是指使用5根光线,而是指1+6+12+18+24+30=91

根光线。 像空间F/#

像空间F/#是与无限远共轭的近轴有效焦距与近轴入瞳直径之比。注意。即使透镜不是用于无限远共轭,这一量还是使用无限远共轭的方法。 像空间数值孔径(NA)

像空NA是象空间折射率乘上近轴轴上主光线与近轴轴上+y边

缘光线之间夹角的正弦值,是在指定共轭距离处,按基准波长来计算的。 透镜单位

透镜单位是透镜系统测量的基本单位。透镜单位用于半径、厚度、孔径和其他量,可以是毫米、厘米、英寸、米。 边缘光线

边缘光线是从物体开始,通过入瞳边缘,最终入射到象面上的光线。 最大视场

如果“视场角”被选择,用度数显示最大视场角;如果选择“物高”,用透镜单位显示最大径向物体坐标;如果“象高”被选择,则用透镜单位显示最大径向象高。视场模式在“系统”菜单下的视场数据对话框中进行设置。 非近轴系统

非近轴系统指那些不能完全用近轴光线数据描述的光学系统。通常包括:有倾斜或者平移的系统(哟坐标转换平面)、全息、光栅、理想透镜组、三维样条曲线、ABCD矩阵、渐变折射率或者衍射元件等。

对于旋转对称系统的折反射元件,有很多的光线象差理论。包括Seidel象差,畸变,高斯光束数据,以及几乎所有的近轴参数,比如焦距,F/#,瞳面尺寸和位置等。所有这些数值都是由近轴光线数据计算的。

如果系统包含上述任意非近轴元件,则按照近轴光线追迹计算得到的数据是不可信的。

非顺序光线追迹

非顺序光线追迹是光线沿着自然可实现的路径进行追迹,直到被物体拦截,然后折射、反射、或者被吸收,这取决于物体的特性。光线继续沿着新的路径前进。在非顺序光线追迹中,光线可以按任意顺序入射到任意一组物体上,也可以重复

入射到同一物体上,这取决于物体的几何形状和特性。 可参照顺序光线追迹。 归一化视场和瞳面坐标

归一化视场和瞳面坐标在ZEMAX程序和文档中经常用到。有四个归一化坐标:Hx,Hy,Px,and Py。Hx和Hy为归一化视场坐标,Px和 Py是归一化瞳面坐标。 归一化视场和瞳面坐标代表单位圆上的点。视场径向大小(如果视场用物高定义,则为物高)用来对归一化视场进行放大。入瞳半经用来放大归一化瞳面坐标。例如,假如最大物高是10mm,如果定义了3个场域, 分别在:0、7、10mm。坐标(Hx=0,Hy=1)表示此光线始于物体最顶端(x=0mm,y=10mm);坐标(Hx=-1,Hy=0)表示此条光线始于物面上(x=-10mm,y=0mm)。

瞳面坐标也是同样。假如入瞳半径(不是直径)是8mm,那么(Px=0,Py=1)表示此光线通过入瞳顶端。如果光线在入瞳面上,光线坐标是(x=0,y=8)。 注意:归一化坐标总是位于-1到+1之间,所以 Hx2+Hy2≤1, Px2+Py2≤1

采用归一化坐标的优点是,某一些光线通常有相同的坐标,不论物体或者入瞳大小和位置如何。例如,边缘光线是从物体中心到入瞳边缘的光线,归一化坐标为(Hx=0,Hy=0,Px=0,Py=1)。主光线从视场顶端到入瞳中心,归一化坐标为(Hx=0,Hy=1, Px=0,Py=1)。

另一个优点是:即使瞳面大小和位置改变了。光线坐标仍然有用。假如在优化透镜之前,您定义了光线设置来计算系统绩效函数。如果使用归一化坐标,即使优化后入瞳大小和位置或者物体的大小和位置改变了,光线坐标仍然不变。在优化的过程中也不会改变。

当视场位置用角度来定义时,归一化坐标也起作用。例如:假定将y-field的角度选为0;7;10度,这表示角度空间中的最大视场“半径”为10度。则归一化视场坐标(Hx=0,Hy=1)表示x-field是0度,y-field是10度。归一化视场坐标(Hx=-0.5,Hy=0.4)表示x-field是-5度,y-field是4度。注意:即使没有定义x-field,光线追迹时也可以使用Hx的非零值。Hx和 Hy值一般指物方角度空间内圆上点,圆的半径由最大径向视场决定。如果定义单个视场点X向视场角为10度;y-field是 6度,则最大圆形区域是11.66度,接着Hx和 Hy将按此半

径进行归一化。

注意:如果用视场角定义物体,坐标为归一化视场角;如果用物高定义,则Hx和 Hy为归一化物高。 物方数值孔径

物空间数值孔径是衡量从物从物面出射光线的发散率。数值孔径定义为折射率乘上近轴边缘光线角都正弦值,以物空间为测试空间。边缘光线为从物点发射的光锥的边缘光线。 参数数据

参数数据用来定义非标准面型。例如,参数数据可能包括非球面系数,光栅间隔,倾斜和平移数据。对参数数据值的讨论可以参看“面型”一章中“参数数据”部分。 近轴和旁轴光线

近轴的含义是“在轴附件”。近轴光学是由斯涅尔定理线性形式描述的光线。斯涅尔定理是: nsinθ=n’sinθ’

对于小角度可改写为: nθ= n’θ’

光线中很多的定义是基于线性假设的。象差是由于不符合线性而产生的,所以一个光学系统的近轴特性通常被认为是系统没有象差时的特性。

虽然有很多的简单公式可用来计算近轴参数,比如焦距,F/#,放大率,等等。但ZEMAX通常不用这些公式。ZEMAX通过追迹实际的旁轴光线(指符合斯涅尔定理的光线)来计算,这些光线与基准光线(通常为光轴或者主光线)之间有一个小的角度。

ZEMAX之所以采用旁轴光线而不采用近轴公式追迹光线,是因为很多的光学系统包含非近轴的元件。非近轴元件是指这些元件不

能用初级象差理论很好地描述。这包括倾斜和离轴系统、全息系统、衍射光学和渐变折射率镜头等。

ZEMAX计算很多的近轴参数,但在系统具有非标准元件时,使用这些参数值要十分注意。通常情况下。使用旁轴光线是可行的,但对于非常特别的系统,描述成像特性时仅仅使用一些初级象差数值就不够了。